ERRATUM TO "TRANSVERSE LINES TO SURFACES OVER FINITE FIELDS"

SHAMIL ASGARLI, LIAN DUAN, AND KUAN-WEN LAI

In [\[ADL21,](#page-3-0) Theorem 4.5], we claim that, given a reduced and geometrically irreducible hypersurface $X = \{F = 0\} \subset \mathbb{P}^n$ over \mathbb{F}_q , if it is Frobenius nonclassical, then it is nonreflexive. If we denote by $\gamma: X - \rightarrow X^*$ the Gauss map of X, then X is nonreflexive if and only if, at a general point $P \in X$, the pullback of differentials

(0.1)
$$
d\gamma_P^*: (\gamma^*\Omega_{X^*}) \otimes \mathbb{F}_q(P) \longrightarrow \Omega_X \otimes \mathbb{F}_q(P)
$$

is not injective. In our original argument, we intended to prove this property via [\[ADL21,](#page-3-0) Lemma 4.6], which shows that the determinant of the Hessian matrix

$$
H_F := (F_{ij}) \quad \text{where} \quad F_{ij} = \frac{\partial^2 F}{\partial X_j \partial X_i}
$$

is zero modulo F. While $[ADL21, \text{ Lemma } 4.6]$ is correct, this is not sufficient to prove [\[ADL21,](#page-3-0) Theorem 4.5]. The subtle error is the following incorrect assertion: a hypersurface X is nonreflexive if and only if the determinant of the Hessian matrix of X vanishes identically on X. Let us explain why this claim fails when $\deg(X) \equiv 1 \mod \text{char}(\mathbb{F}_q)$.

Indeed, if we denote $d = \deg(F)$ and $F_i = \partial F / \partial X_i$, then a computation with Euler's formula shows

$$
(0.2) \begin{pmatrix} d(d-1)F & (d-1)F_1 & \cdots & (d-1)F_n \\ (d-1)F_1 & F_{11} & \cdots & F_{n1} \\ \vdots & \vdots & \ddots & \vdots \\ (d-1)F_n & F_{1n} & \cdots & F_{nn} \end{pmatrix} = \begin{pmatrix} X_0 & X_1 & \cdots & X_n \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \cdot H_F \cdot \begin{pmatrix} X_0 & 0 & \cdots & 0 \\ X_1 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ X_n & 0 & \cdots & 1 \end{pmatrix}
$$

from which we see that $\det(H_F)$ is constantly zero whenever $d \equiv 1 \mod \text{char}(\mathbb{F}_q)$. Moreover, we actually assume that the Gauss map is finite in our original argument, but we mistakenly ignored this assumption in the statement of [\[ADL21,](#page-3-0) Theorem 4.5]. In this corrigendum, we fix the statement and prove it without using [\[ADL21,](#page-3-0) Lemma 4.6].

Theorem 0.1. Let $X \subset \mathbb{P}^n$ be a reduced and geometrically irreducible Frobenius nonclassical hypersurface over \mathbb{F}_q . Suppose that $\dim(X) = \dim(X^*)$ (which is satisfied when X is smooth due to Zak's theorem $[Zak93]$. Then X is nonreflexive.

Our strategy of proof goes as follows: Let I and I' be the ideal sheaves for X and X^* , respectively. Then there is a commutative diagram for sheaves of differentials:

(0.3)
$$
\gamma^* (I'/I'^2) \longrightarrow \gamma^* (\Omega_{(\mathbb{P}^n)^*}|_{X^*}) \longrightarrow \gamma^* \Omega_{X^*} \longrightarrow 0
$$

$$
\downarrow \qquad \qquad \down
$$

Note that $\gamma = \Gamma |_{X}$ where Γ is the polar map

$$
\Gamma\colon\mathbb{P}^n\dashrightarrow (\mathbb{P}^n)^*: [X_0:\cdots:X_n]\longmapsto \left[\frac{\partial F}{\partial X_0}:\cdots:\frac{\partial F}{\partial X_n}\right].
$$

We have $\gamma^* (\Omega_{(\mathbb{P}^n)^*}|_{X^*}) = (\Gamma^* \Omega_{(\mathbb{P}^n)^*})|_{X}$ and the vertical arrow in the middle of (0.3) is induced by the pullback of differentials $d\Gamma^*: \Gamma^*\Omega_{(\mathbb{P}^n)^*} \longrightarrow \Omega_{\mathbb{P}^n}$. Let $U \subset \mathbb{P}^n$ be an open neighborhood of P where $I(U) = (f)$. In order to prove that (0.1) is not injective, we will prove that the image of the linear map

(0.4)
$$
d\Gamma_P^*: (\Gamma^*\Omega_{(\mathbb{P}^n)^*}) \otimes \mathbb{F}_q(P) \longrightarrow \Omega_{\mathbb{P}^n} \otimes \mathbb{F}_q(P)
$$

has dimension at most $n - 2 = \dim(X) - 1$ modulo df.

1. Proof of the theorem

Let $[Y_0: \cdots: Y_n]$ be homogeneous coordinates for $(\mathbb{P}^n)^*$ so that the polar map Γ can be written as $Y_i = F_i$, and let $y_i = Y_i/Y_0$ be the affine coordinates for the chart $\{Y_0 \neq 0\}$. Assume without loss of generality that the point $P \in X$ belongs to the open subset

$$
U := \{X_0 \neq 0\} \cap \{F_0 \neq 0\} \cap \left(\bigcup_{i=1}^n \{F_i \neq 0\}\right) \subset \mathbb{P}^n.
$$

If we write $x_i := X_i/X_0$ and let $f_i = f_i(x_1,...,x_n)$ be the dehomogenization of F_i with respect to X_0 , then $\Gamma|_U$ can be expressed as $y_i = f_i/f_0 = F_i/F_0$. In this setting, the map of differentials $d\Gamma^*|_U$ sends each dy_i to

$$
dy_i = \sum_{j=1}^n \frac{\partial (f_i/f_0)}{\partial x_j} dx_j = \sum_{j=1}^n \left(\frac{(\partial f_i/\partial x_j)f_0 - f_i(\partial f_0/\partial x_j)}{f_0^2} \right) dx_j = \sum_{j=1}^n \left(\frac{F_{ij}F_0 - F_iF_{0j}}{F_0^2} \right) dx_j
$$

This linear map corresponds to the square matrix M_F/F_0 where M_F is given by

$$
M_F := \begin{pmatrix} F_{11} - \frac{F_1}{F_0} F_{01} & F_{21} - \frac{F_2}{F_0} F_{01} & \cdots & F_{n1} - \frac{F_n}{F_0} F_{01} \\ F_{12} - \frac{F_1}{F_0} F_{02} & F_{22} - \frac{F_2}{F_0} F_{02} & \cdots & F_{n2} - \frac{F_n}{F_0} F_{02} \\ \vdots & \vdots & \ddots & \vdots \\ F_{1n} - \frac{F_1}{F_0} F_{0n} & F_{2n} - \frac{F_2}{F_0} F_{0n} & \cdots & F_{nn} - \frac{F_n}{F_0} F_{0n} \end{pmatrix}.
$$

Now we extend the above matrix to the following one

$$
H''_F := \begin{pmatrix} 0 & F_1 & F_2 & \cdots & F_n \\ F_1 & F_{11} - \frac{F_1}{F_0} F_{01} & F_{21} - \frac{F_2}{F_0} F_{01} & \cdots & F_{n1} - \frac{F_n}{F_0} F_{01} \\ F_2 & F_{12} - \frac{F_1}{F_0} F_{02} & F_{22} - \frac{F_2}{F_0} F_{02} & \cdots & F_{n2} - \frac{F_n}{F_0} F_{02} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ F_n & F_{1n} - \frac{F_1}{F_0} F_{0n} & F_{2n} - \frac{F_2}{F_0} F_{0n} & \cdots & F_{nn} - \frac{F_n}{F_0} F_{0n} \end{pmatrix}
$$

.

Lemma 1.1. Let $(0, a_1, \ldots, a_n)$ be a nonzero vector where $a_i \in \overline{\mathbb{F}_q}$. If

$$
(0, a_1, \dots, a_n) \cdot H_F''(P) = 0 \quad \text{where} \quad P \in U,
$$

then the column space of $M_F(P)$ has dimension $\leq n-2$ modulo $(F_1(P),...,F_n(P))^t$.

Proof. The hypothesis implies that

$$
(a_1, ..., a_n) \cdot M_F(P) = 0
$$
 and $(a_1, ..., a_n) \cdot (F_1(P), ..., F_n(P))^t = 0.$

The first equation implies that of $\text{rk}(M_F(P)) \leq n-1$. If $\text{rk}(M_F(P)) \leq n-2$, the proof is done. If $rk(M_F(P)) = n-1$, the second equation above implies that $(F_1(P), \ldots, F_n(P))^t$ belongs to the column space of $M_F(P)$, which proves the claim.

The matrix H_F'' is related to the Hessian matrix H_F in the following way: If we restrict the matrix on the left hand side of (0.2) to $X = \{F = 0\}$ and then divide its first row and first column by $(d-1)$, we will get

(1.1)
$$
H'_{F} := \begin{pmatrix} 0 & F_1 & \cdots & F_n \\ F_1 & F_{11} & \cdots & F_{n1} \\ \vdots & \vdots & \ddots & \vdots \\ F_n & F_{1n} & \cdots & F_{nn} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ \frac{F_{01}}{F_0} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \frac{F_{0n}}{F_0} & 0 & \cdots & 1 \end{pmatrix} \cdot H''_{F}.
$$

However, we cannot divide by $d-1$ in the field when $d \equiv 1 \mod p$. We see that the matrix H_F'' is the correct replacement for the usual Hessian in positive characteristic, especially when $d \equiv 1 \mod p$.

On the other hand, X is Frobenius nonclassical means that there exists a polynomial R that satisfies

(1.2)
$$
FR = X_0^q F_0 + X_1^q F_1 + \dots + X_n^q F_n.
$$

Lemma 1.2. Let $P = [1 : X_1 : \cdots : X_n] \in X \cap U$. Then

$$
(1-d+R, X_1-X_1^q, X_2-X_2^q, \cdots, X_n-X_n^q) \cdot H'_F(P) = 0.
$$

Proof. Subtracting Euler's formula $dF = X_0F_0 + \cdots + X_nF_n$ by [\(1.2\)](#page-2-0) gives

(1.3)
$$
(d - R)F = (X_0 - X_0^q)F_0 + (X_1 - X_1^q)F_1 + \dots + (X_n - X_n^q)F_n.
$$

Taking partial derivatives of both sides with respect to X_i followed by a rearrangement gives

$$
(1.4) \qquad -R_iF = (1-d+R)F_i + (X_0 - X_0^q)F_{0i} + (X_1 - X_1^q)F_{1i} + \dots + (X_n - X_n^q)F_{ni}
$$

Then the statement follows by a straightforward computation with (1.3) , (1.4) , the hypothesis that $X_0 = 1$, and the fact that $F(P) = 0$.

Proof of Theorem [0.1.](#page-0-3) Pick a general $P = [1 : X_1 : \cdots : X_n] \in X \cap U$. First we compute

$$
(1-d+R, X_1 - X_1^q, X_2 - X_2^q, \cdots, X_n - X_n^q) \cdot \begin{pmatrix} 1 & 0 & \cdots & 0 \\ \frac{F_{01}}{F_0} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \frac{F_{0n}}{F_0} & 0 & \cdots & 1 \end{pmatrix}
$$

= $\left((1-d+R) + \sum_{j=1}^n \left(\frac{F_{0j}}{F_0} (X_j - X_j^q) \right), X_1 - X_1^q, \dots, X_n - X_n^q \right)$
 $\stackrel{(1.4)}{=} (0, X_1 - X_1^q, \dots, X_n - X_n^q)$

Lemma [1.2](#page-2-3) and relation [\(1.1\)](#page-2-4) implies that $(0, X_1 - X_1^q)$ $H''_1, \ldots, X_n - X_n^q) \cdot H''_F(P) = 0$, which implies that $(X_1 - X_1^q)$ $X_1^q, \ldots, X_n - X_n^q \cdot M_F(P) = 0$. By applying Lemma [1.1,](#page-1-0) we conclude that the image of $d\gamma_P^*$ has dimension $\leq n-2$ modulo $\sum_{i=1}^n F_i(P)dx_i = df$, thus it cannot be injective. This shows that the Gauss map γ is inseparable, whence X is nonreflexive. \square

REFERENCES

- [ADL21] Shamil Asgarli, Lian Duan, and Kuan-Wen Lai, Transverse lines to surfaces over finite fields, Manuscripta Math. 165 (2021), no. 1-2, 135–157.
- [Zak93] F. L. Zak, Tangents and secants of algebraic varieties, Translations of Mathematical Monographs, vol. 127, American Mathematical Society, Providence, RI, 1993. Translated from the Russian manuscript by the author.