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In [ADL21, Theorem 4.5], we claim that, given a reduced and geometrically irreducible
hypersurface X = {F = 0} ⊂ Pn over Fq, if it is Frobenius nonclassical, then it is nonreflex-

ive. If we denote by γ : X // X∗ the Gauss map of X, then X is nonreflexive if and only

if, at a general point P ∈ X, the pullback of differentials

(0.1) dγ∗P : (γ∗ΩX∗)⊗ Fq(P ) −→ ΩX ⊗ Fq(P )

is not injective. In our original argument, we intended to prove this property via [ADL21,
Lemma 4.6], which shows that the determinant of the Hessian matrix

HF := (Fij) where Fij =
∂2F

∂Xj∂Xi

is zero modulo F . While [ADL21, Lemma 4.6] is correct, this is not sufficient to prove
[ADL21, Theorem 4.5]. The subtle error is the following incorrect assertion: a hypersurface
X is nonreflexive if and only if the determinant of the Hessian matrix ofX vanishes identically
on X. Let us explain why this claim fails when deg(X) ≡ 1 mod char(Fq).

Indeed, if we denote d = deg(F ) and Fi = ∂F/∂Xi, then a computation with Euler’s
formula shows

(0.2)


d(d− 1)F (d− 1)F1 · · · (d− 1)Fn
(d− 1)F1 F11 · · · Fn1

...
...

. . .
...

(d− 1)Fn F1n · · · Fnn

 =


X0 X1 · · · Xn

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 ·HF ·


X0 0 · · · 0
X1 1 · · · 0
...

...
. . .

...
Xn 0 · · · 1


from which we see that det(HF ) is constantly zero whenever d ≡ 1 mod char(Fq). Moreover,
we actually assume that the Gauss map is finite in our original argument, but we mistakenly
ignored this assumption in the statement of [ADL21, Theorem 4.5]. In this corrigendum, we
fix the statement and prove it without using [ADL21, Lemma 4.6].

Theorem 0.1. Let X ⊂ Pn be a reduced and geometrically irreducible Frobenius nonclassical
hypersurface over Fq. Suppose that dim(X) = dim(X∗) (which is satisfied when X is smooth
due to Zak’s theorem [Zak93]). Then X is nonreflexive.

Our strategy of proof goes as follows: Let I and I ′ be the ideal sheaves for X and X∗,
respectively. Then there is a commutative diagram for sheaves of differentials:

(0.3)

γ∗
(
I ′/I ′2

)
��

// γ∗
(
Ω(Pn)∗|X∗

)
��

// γ∗ΩX∗

dγ∗

��

// 0

I/I2 // ΩPn|X // ΩX
// 0.
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Note that γ = Γ|X where Γ is the polar map

Γ: Pn 99K (Pn)∗ : [X0 : · · · : Xn] 7−→
[
∂F

∂X0

: · · · : ∂F

∂Xn

]
.

We have γ∗
(
Ω(Pn)∗|X∗

)
=
(
Γ∗Ω(Pn)∗

)
|X and the vertical arrow in the middle of (0.3) is

induced by the pullback of differentials dΓ∗ : Γ∗Ω(Pn)∗ −→ ΩPn . Let U ⊂ Pn be an open
neighborhood of P where I(U) = (f). In order to prove that (0.1) is not injective, we will
prove that the image of the linear map

(0.4) dΓ∗P : (Γ∗Ω(Pn)∗)⊗ Fq(P ) −→ ΩPn ⊗ Fq(P )

has dimension at most n− 2 = dim(X)− 1 modulo df .

1. Proof of the theorem

Let [Y0 : · · · : Yn] be homogeneous coordinates for (Pn)∗ so that the polar map Γ can be
written as Yi = Fi, and let yi = Yi/Y0 be the affine coordinates for the chart {Y0 6= 0}.
Assume without loss of generality that the point P ∈ X belongs to the open subset

U := {X0 6= 0} ∩ {F0 6= 0} ∩

(
n⋃
i=1

{Fi 6= 0}

)
⊂ Pn.

If we write xi := Xi/X0 and let fi = fi(x1, . . . , xn) be the dehomogenization of Fi with
respect to X0, then Γ|U can be expressed as yi = fi/f0 = Fi/F0. In this setting, the map of
differentials dΓ∗|U sends each dyi to

dyi =
n∑
j=1

∂(fi/f0)

∂xj
dxj =

n∑
j=1

(
(∂fi/∂xj)f0 − fi(∂f0/∂xj)

f 2
0

)
dxj =

n∑
j=1

(
FijF0 − FiF0j

F 2
0

)
dxj

This linear map corresponds to the square matrix MF/F0 where MF is given by

MF :=


F11 − F1

F0
F01 F21 − F2

F0
F01 · · · Fn1 − Fn

F0
F01

F12 − F1

F0
F02 F22 − F2

F0
F02 · · · Fn2 − Fn

F0
F02

...
...

. . .
...

F1n − F1

F0
F0n F2n − F2

F0
F0n · · · Fnn − Fn

F0
F0n

 .

Now we extend the above matrix to the following one

H ′′F :=


0 F1 F2 · · · Fn
F1 F11 − F1

F0
F01 F21 − F2

F0
F01 · · · Fn1 − Fn

F0
F01

F2 F12 − F1

F0
F02 F22 − F2

F0
F02 · · · Fn2 − Fn

F0
F02

...
...

...
. . .

...
Fn F1n − F1

F0
F0n F2n − F2

F0
F0n · · · Fnn − Fn

F0
F0n

 .

Lemma 1.1. Let (0, a1, . . . , an) be a nonzero vector where ai ∈ Fq. If

(0, a1, . . . , an) ·H ′′F (P ) = 0 where P ∈ U,

then the column space of MF (P ) has dimension ≤ n− 2 modulo (F1(P ), . . . , Fn(P ))t.
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Proof. The hypothesis implies that

(a1, . . . , an) ·MF (P ) = 0 and (a1, . . . , an) · (F1(P ), . . . , Fn(P ))t = 0.

The first equation implies that of rk(MF (P )) ≤ n − 1. If rk(MF (P )) ≤ n − 2, the proof is
done. If rk(MF (P )) = n − 1, the second equation above implies that (F1(P ), . . . , Fn(P ))t

belongs to the column space of MF (P ), which proves the claim. �

The matrix H ′′F is related to the Hessian matrix HF in the following way: If we restrict
the matrix on the left hand side of (0.2) to X = {F = 0} and then divide its first row and
first column by (d− 1), we will get

(1.1) H ′F :=


0 F1 · · · Fn
F1 F11 · · · Fn1
...

...
. . .

...
Fn F1n · · · Fnn

 =


1 0 · · · 0
F01

F0
1 · · · 0

...
...

. . .
...

F0n

F0
0 · · · 1

 ·H ′′F .
However, we cannot divide by d− 1 in the field when d ≡ 1 mod p. We see that the matrix
H ′′F is the correct replacement for the usual Hessian in positive characteristic, especially when
d ≡ 1 mod p.

On the other hand, X is Frobenius nonclassical means that there exists a polynomial R
that satisfies

(1.2) FR = Xq
0F0 +Xq

1F1 + · · ·+Xq
nFn.

Lemma 1.2. Let P = [1 : X1 : · · · : Xn] ∈ X ∩ U . Then

(1− d+R,X1 −Xq
1 , X2 −Xq

2 , · · · , Xn −Xq
n) ·H ′F (P ) = 0.

Proof. Subtracting Euler’s formula dF = X0F0 + · · ·+XnFn by (1.2) gives

(1.3) (d−R)F = (X0 −Xq
0)F0 + (X1 −Xq

1)F1 + · · ·+ (Xn −Xq
n)Fn.

Taking partial derivatives of both sides with respect to Xi followed by a rearrangement gives

(1.4) −RiF = (1− d+R)Fi + (X0 −Xq
0)F0i + (X1 −Xq

1)F1i + · · ·+ (Xn −Xq
n)Fni

Then the statement follows by a straightforward computation with (1.3), (1.4), the hypoth-
esis that X0 = 1, and the fact that F (P ) = 0. �

Proof of Theorem 0.1. Pick a general P = [1 : X1 : · · · : Xn] ∈ X ∩ U . First we compute

(1− d+R,X1 −Xq
1 , X2 −Xq

2 , · · · , Xn −Xq
n) ·


1 0 · · · 0
F01

F0
1 · · · 0

...
...

. . .
...

F0n

F0
0 · · · 1


=

(
(1− d+R) +

n∑
j=1

(
F0j

F0

(Xj −Xq
j )

)
, X1 −Xq

1 , . . . , Xn −Xq
n

)
(1.4)
= (0, X1 −Xq

1 , . . . , Xn −Xq
n)

Lemma 1.2 and relation (1.1) implies that (0, X1 −Xq
1 , . . . , Xn −Xq

n) · H ′′F (P ) = 0, which
implies that (X1 −Xq

1 , . . . , Xn −Xq
n) ·MF (P ) = 0. By applying Lemma 1.1, we conclude
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that the image of dγ∗P has dimension ≤ n− 2 modulo
∑n

i=1 Fi(P )dxi = df , thus it cannot be
injective. This shows that the Gauss map γ is inseparable, whence X is nonreflexive. �
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