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Abstract

We study the birational self-maps of the projective plane over finite fields that induce permu-
tations on the set of rational points. As a main result, we prove that no odd permutation arises
over a non-prime finite field of characteristic two, which completes the investigation initiated
by Cantat about which permutations can be realized this way. Main ingredients in our proof
include the invariance of parity under groupoid conjugations by birational maps, and a list of
generators for the group of such maps.
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INTRODUCTION

1 Introduction

We call a birational self-map of a variety a birational permutation if both the map and its inverse
are defined at all rational points on the variety. In particular, such a map induces a bijection on
the set of rational points. Over a finite field, the rational points form a finite set, so such a bijection
induces a permutation in the usual sense. Fixing a variety and a finite ground field, what kind of
permutations on the rational points can be realized this way?

In this paper, we focus on the birational self-maps of a projective space Pn, that is, the Cremona
transformations. They form a group Crn(k) where k is the ground field. We say that a Cremona
transformation is bijective if it is a birational permutation. Clearly, bijective elements form a
subgroup BCrn(k) ⊂ Crn(k). When k = Fq, the finite field of q elements, the actions of bijective
elements on the set of Fq-points determines a group homomorphism

σq : BCrn(Fq) // Sym(Pn(Fq))

where Sym(Pn(Fq)) is the symmetric group of the set Pn(Fq). Let Alt(Pn(Fq)) ⊂ Sym(Pn(Fq)) be
the alternating subgroup, which consists of even permutations. In the case n = 2, it is known that
the image of σq satisfies

• Im(σq) = Sym(P2(Fq)) if q is odd or q = 2,

• Im(σq) ⊃ Alt(P2(Fq)) if q = 2m ≥ 4.

This result was mainly proved by Cantat [Can09], but the original proof has a minor gap. In Sec-
tion 2, we review Cantat’s construction and fill in the gap with a theorem by Cohen (Theorem 2.8)
about primitive roots of Fq2 .

The main focus of this paper is the case q = 2m ≥ 4. We prove that:

Theorem 1.1. For q = 2m ≥ 4, the group BCr2(Fq) produces only even permutations on P2(Fq).
As a result, we have Im(σq) = Alt(P2(Fq)).

Our proof for Theorem 1.1 relies on being able to transfer the parity problem from one surface to
another. Let Birk(X) denote the group of birational self-maps of a variety X over a field k. In the
same spirit of the notation BCrn(k), we denote by BBirk(X) ⊂ Birk(X) the subgroup of birational
permutations. For surfaces over Fq, where q = 2m ≥ 4, the parity of a birational permutation is
invariant under groupoid conjugations by birational maps in the following sense:

Theorem 1.2. Let X and Y be smooth surfaces over Fq, where q = 2m ≥ 4, together with two
birational permutations α ∈ BBirFq(X) and β ∈ BBirFq(Y ). Suppose that there exists a birational
map h : X 99K Y such that α = h−1βh, i.e., the following diagram commutes:

X

h
��

α // X

h
��

Y
β

// Y.

Then the permutations induced by α on X(Fq) and β on Y (Fq) have the same parity.
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Throughout the paper, we will call the groupoid conjugation demonstrated in Theorem 1.2
simply as “conjugation”. Our next result studies birational permutations on conic bundles over
P1, del Pezzo surfaces, and bijective Cremona maps on P2 of finite order. As an application of
Theorem 1.2, we obtain:

Theorem 1.3. Over Fq, q = 2m ≥ 4, a birational permutation on a smooth surface induces an
even permutation on the set of Fq-points if it is conjugate to

• a birational permutation on a conic bundle over P1 preserving the fiber class,

• an automorphism of a rational del Pezzo surface, or

• an element of BCr2(Fq) of finite order.

To complete the proof of Theorem 1.1, we first produce a list of generators for the bijective
Cremona group, and then show that every generator is a composition of maps described as in
Theorem 1.3. We state the result on the generators below and refer the reader to Lemma 5.4 for
the complete list.

Theorem 1.4. Let k be a perfect field and T ⊂ Cr2(k) be the set of generators for Cr2(k) given by
Iskovskikh [Isk91]. Then T ∩ BCr2(k) forms a set of generators for BCr2(k).

Remark 1.5. The first version of this paper was announced on the arXiv in 2019, where Theo-
rem 1.1 remained as a conjecture. In that version, we proved that all but the quintic transformations
among the generators in Theorem 1.4 induce only even permutations, and verified with Magma
[BCP97] that the quintic transformations over Fq for q = 4, 8, 16 are all even. In June 2021, we
communicated with Julia Schneider on the central symmetry of a relation diagram of Sarkisov links,
which allowed us to attack the quintic transformations and prove our conjecture.

In parallel to our work on the quintic transformations, we learned that Genevois, Lonjou, and
Urech [GLU21] also came up with a proof for Theorem 1.1 based on our Theorem 1.3 and the main
theorem of [LS21] with a more combinatorial approach. In fact, they observed that parity can still
be defined for a birational self-map on a smooth rational surface over Fq, q = 2m ≥ 4, even if the
map is not bijective, which allowed them to prove Theorem 1.1 not only for P2 but also for all
smooth rational surfaces.

Organization of the paper In Section 2, we discuss the realizability of all permutations on the
rational points in the plane over finite fields of odd characteristics and F2. We study the parity
problem over a non-prime field of characteristic 2 throughout Sections 3–5, where we assume that
k = Fq with q = 2m ≥ 4 unless otherwise specified. In Section 3, we begin with the analysis of the
parities induced by linear transformations and then prove Theorem 1.2. In Section 4, we study the
birational permutations on certain rational surfaces and prove Theorem 1.3. In Section 5, we exhibit
a list of generators for BCr2(k) when k is a perfect field and prove Theorem 1.4. Then we analyze
whether each generator induces an even permutation and deduce Theorem 1.1. In Section 6, we
answer a few questions about BCr2(k) as a subgroup of Cr2(k), which include whether it is finitely
generated, what its index is, and whether it is a normal subgroup.

Acknowledgements We thank Brendan Hassett for suggesting us the problem in the present
paper. We also thank Zinovy Reichstein for a quick proof that BCr2(k) is not finitely generated
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when k is uncountable. We thank Julia Schneider for discussing with us on the key ideas that
allowed us to attack the quintic transformations. Before we are able to prove our conjecture, Lian
Duan assisted us designing a Magma code that can compute efficiently the parities of all possible
quintic transformations over Fq for q = 4, 8, 16. We are very grateful for his generous help. Finally,
we thank the anonymous referee for their valuable suggestions. During this project, the first author
was partially supported by funds from NSF Grant DMS-1701659. The second author is supported
by the ERC Synergy Grant ERC-2020-SyG-854361-HyperK. The third author was supported by
EPSRC grant EP/R021422/2. The last author was supported by FIBALGA ANR-18-CE40-0003-
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2 Realizing arbitrary permutations

Theorem 2.1 ([Can09]). The image of the homomorphism σq : BCr2(Fq)→ Sym(P2(Fq)) satisfies

• Im(σq) = Sym(P2(Fq)) if q is odd or q = 2, and

• Im(σq) ⊃ Alt(P2(Fq)) if q = 2m ≥ 4.

Cantat’s proof of Theorem 2.1 is built upon a property about the subgroups of Sym(Pn(Fq))
that contain PSLn+1(Fq): The elements in Sym(Pn(Fq)) which preserve the collinearity, i.e., map
collinear points to collinear points, are called collineations. They form a subgroup

PΓLn(Fq) ⊂ Sym(Pn(Fq))

which contains PSLn+1(Fq).

Theorem 2.2 ([Bha81,KM74,Lis75,Pog74]). Let G ⊂ Sym(Pn(Fq)) be a subgroup. If G contains
PSLn+1(Fq), then either G ⊂ PΓLn(Fq) or G ⊃ Alt(Pn(Fq)).

Applying this result to the image σq(BCr2(Fq)), Cantat proved that σq is surjective by con-
structing an element f ∈ BCr2(Fq) which

• does not preserve the collinearity on P2(Fq), and
• induces an odd permutation on P2(Fq).

Our main goal in this section is to exhibit the construction of f explicitly using input from the
theory of primitive roots by Cohen.

2.1 Special birational maps on a quadric surface

We first recall a key construction in [Can09, Section 3]. Fix a smooth quadric Q and a line L in P3,
both defined over Fq, such that L meets Q in a pair of conjugate points over the extension Fq2/Fq.
The projection from L induces a rational map πL : Q 99K P1 fibered in the conics cut out by the
planes containing L. Assume further that there exists an Fq-point P0 in the base P1 over which the
fiber C0 := π−1

L (P0) is smooth.
This setting implies that every degenerate fiber over Fq is a union of distinct lines L1 ∪ L2

conjugate to each other over Fq2/Fq, on which the node P := L1 ∩L2 appears as the only Fq-point.
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REALIZING ARBITRARY PERMUTATIONS

The projection from P defines a birational map πP : Q 99K P2. Let us organize these maps into a
diagram:

Q

πL: conic fibration
��

∼
πP // P2

P1.

(2.1)

Cantat’s construction of a desired f ∈ BCr2(Fq) can be divided into two parts:

(1) Constructing a birational self-map g on Q that preserves the fiber structure, acts as a pre-
scribed odd permutation on C0(Fq) and as the identity on Fq-points of the other fibers.

(2) Descending g down to P2 as f := πP ◦g◦π−1
P , then showing that f induces an odd permutation

on the Fq-points and does not preserve collinearity.

Example 2.3. Assume that q is odd. Let [x : y : z : w] be a system of homogeneous coordinates
on P3. Choose a non-square t ∈ Fq, namely, t 6= s2 for all s ∈ Fq. Then the data

Q :=
{
x2 − ty2 + z2 = w2

}
⊂ P3, L := {z = w = 0} ⊂ P3,

and P := [0 : 0 : 1 : 1] ∈ Q provide an example of (2.1). Here the projection map is explicitly given
by πL([x : y : z : w]) = [z : w], and the degenerate fiber through P is defined as x2− ty2 = 0 on the
plane parametrized by the map,

P2 ↪→ P3 : [x : y : u] 7→ [x : y : u : u].

For a smooth fiber over Fq, one can choose

C0 := π−1
L ([0 : 1]) =

{
x2 − ty2 = w2

}
⊂ Q. (2.2)

Note that C0 lies on the plane {z = 0}.

Let us construct the map g as in (1) in the case of odd characteristics using Example 2.3. (The
case of characteristic 2 will be discussed in §2.3.2.) The process starts by constructing a suitable
automorphism on the smooth fiber C0 in (2.2) and then extend it to Q. Consider the automorphism
on the plain {z = 0}:

P2 → P2 : [x : y : w] 7→ [αx+ tβy : βx+ αy : w],

where the parameter (α, β) is a point on the affine conic

S◦ :=
{
α2 − tβ2 = 1

}
⊂ A2.

Note that this is the identity map when (α, β) = (1, 0). For each (α, β) ∈ S◦, the formula induces
an automorphism g0 : C0

∼−→ C0 as one can verify that

(αx+ tβy)2 − t(βx+ αy)2 = x2 − ty2. (2.3)
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Remark 2.4. The map g0 can be expressed as

g0 : C0
∼−→ C0 : [x : y : w] 7→ [αx+ tβy : βx+ αy : γw]

where [α : β : γ] ∈ P2 is any Fq-point on the (projective) conic

S := {α2 − tβ2 = γ2} ⊂ P2.

Note that every Fq-point on S has γ 6= 0 since t ∈ Fq is a non-square. Due to this, we assume that
γ = 1 for the convenience of computation.

In the following, we exhibit how to extend g0 to the whole quadric Q as a birational permutation
that fixes the Fq-points not lying on C0. The method is built upon the following lemma about
interpolations. Although we only need the case n = 1 for our purposes, we present the proof of the
general case as it is not any harder.

Lemma 2.5. Let Fq be a finite field. Fix any P0 ∈ Pn(Fq) and P1, P2 ∈ P1(Fq) such that P1 6= P2.
Then there exists a rational map h : Pn 99K P1 over Fq such that

• h(P0) = P1,

• h(P ) = P2 for all P ∈ Pn(Fq) \ {P0}.

Proof. For every P ∈ Fn+1
q \ {0}, there exists a homogeneous polynomial fP ∈ Fq[x0, ..., xn] such

that for each P ′ ∈ Fn+1
q \ {0},

fP (P ′) =

{
1 if P ′ = λP for λ ∈ F∗q
0 otherwise

Indeed, we may assume that P = (1, 0, ..., 0) after applying a GLn+1(Fq)-action, in which case the
polynomial

fP = xq−1
0

n∏
i=1

(xq−1
0 − xq−1

i )

satisfies the desired property. (The function fP serves the role of the Dirac delta function.) Next,
consider the homogeneous polynomial

f :=
1

q − 1

∑
P∈Fn+1

q

fP .

Then f(P ) = 1 for every P ∈ Fn+1
q \ {0}. In order to prove the lemma, let us write P1 = [α : β],

P2 = [γ : δ], and lift P0 ∈ Pn(Fq) to P̃0 ∈ Fn+1
q . Consider h : Pn 99K P1 defined by

h(P ) = [γf(P ) + (α− γ)f
P̃0

(P ) : δf(P ) + (β − δ)f
P̃0

(P )].

Then h is well-defined, and has the desired interpolation property.

Proposition 2.6. For every (α0, β0) ∈ S◦(Fq), the automorphism

g0 : C0
∼−→ C0 : [x : y : w] 7→ [α0x+ tβ0y : β0x+ α0y : w].

extends to a birational self-map g : Q 99K Q that preserves the fibration πL : Q 99K P1 and satisfies
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• g|C0 = g0,

• g|C = id for all Fq-fibers C 6= C0 of πL.

(This element g can be viewed as the group version of the Dirac delta function.)

Proof. Let ζ be an affine coordinate on the base P1 of the fibration πL. We identify S◦ as an open
subset of P1 via the stereographic projection from (−1, 0) ∈ S◦:

S◦ ↪→ P1 : (α, β) 7→ ζ =
β

1 + α
.

Let ζ0 ∈ P1 denote the image of (α0, β0) ∈ S◦ under this map. Note that (1, 0) ∈ S◦ is mapped to
0 ∈ P1. Note also that we can recover α and β by

α =
1 + tζ2

1− tζ2
, β =

2ζ

1− tζ2
. (2.4)

Let P0 := [0 : 1] = πL(C0) ∈ P1. By Lemma 2.5, there exists a rational function ζ = h(z, w) on
the base P1 over Fq such that h(P0) = ζ0 and h(P ) = 0 for all P ∈ P1(Fq) \ {P0}. Substituting it
into (2.4), we obtain two rational functions

α(z, w) =
1 + th(z, w)2

1− th(z, w)2
, β(z, w) =

2h(z, w)

1− th(z, w)2
,

which determine a birational self-map on Q via the inhomogeneous formula:

g : Q 99K Q : [x : y : z : w] 7→ [αx+ tβy : βx+ αy : z : w].

Note that this is well-defined due to the same computation as (2.3). By construction, we have

• (α(P0), β(P0)) = (α0, β0),

• (α(P ), β(P )) = (1, 0) for all P ∈ P1 \ {P0},

which respectively implies that g|C0 = g0 and that g|C = id for all Fq-fibers C 6= C0.

2.2 Odd permutations on the smooth fiber

Let us retain the notation from the previous section. Our goal here is to find a g0 which acts
transitively on C0(Fq) and thus induces an odd permutation. Note that, as C0

∼= P1, it is not hard
to find an automorphism on C0 which induces an odd permutation on the Fq-points. However, it
is not obvious that every such automorphism can be extended to Q while keeping control on the
induced permutation on the other Fq-points. In the following, we identify Fq2 ∼= Fq ⊕

√
t−1Fq and

view C0
∼= P1 as the projectivization

C0
∼= P(Fq ⊕

√
t−1Fq) ∼= P(Fq2).

Lemma 2.7. Assume that g0 is not the identity map, that is, α 6= 1. Then, under a suitable choice
of isomorphism C0

∼= P(Fq2), the action of g0 can be obtained as the multiplication on Fq2 by the
element

β + (α− 1)
√
t−1 ∈ Fq2 (2.5)

where α, β ∈ Fq satisfy α2 − tβ2 = 1.
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Proof. First we identify C0 with P1 using the stereographic projection from [−1 : 0 : 1] ∈ C0. On
the affine chart w = 1, this map can be defined as

θ : C0
∼−→ P1 : (x, y) 7→ ζ =

y

1 + x

where ζ is an affine coordinate on P1. Its inverse θ−1 : P1 ∼−→ C0 is

x =
1 + tζ2

1− tζ2
, y =

2ζ

1− tζ2
.

We claim that gθ := θ ◦ g0 ◦ θ−1 : P1 ∼−→ P1 is given by the formula

gθ(ζ) =
βζ + t−1(α− 1)

(α− 1)ζ + β
. (2.6)

Indeed, as g0(x, y) = (αx+ tβy, βx+ αy) in the affine coordinates, a straightforward computation
shows that

gθ(ζ) =
βx(ζ) + αy(ζ)

1 + αx(ζ) + tβy(ζ)
=

β
(

1+tζ2

1−tζ2

)
+ α

(
2ζ

1−tζ2

)
1 + α

(
1+tζ2

1−tζ2

)
+ tβ

(
2ζ

1−tζ2

)
=

β(1 + tζ2) + α(2ζ)

(1− tζ2) + α(1 + tζ2) + tβ(2ζ)
=

tβζ2 + 2αζ + β

t(α− 1)ζ2 + 2tβζ + (α+ 1)
.

Using the quadratic formula and the fact that α2 − tβ2 = 1, the numerator and denominator can
be decomposed into linear terms:

gθ(ζ) =
tβ(ζ + α−1

tβ )(ζ + α+1
tβ )

t(α− 1)(ζ + α+1
tβ )2

=
tβ(ζ + α−1

tβ )

t(α− 1)(ζ + α+1
tβ )

which can be further simplified as

gθ(ζ) =
tβζ + (α− 1)

t(α− 1)ζ + (α2−1)
β

=
tβζ + (α− 1)

t(α− 1)ζ + tβ
=
βζ + t−1(α− 1)

(α− 1)ζ + β
,

as claimed. Under the identification P1 ∼= P(Fq ⊕
√
t−1Fq), formula (2.6) can be rewritten as

gθ =

(
β t−1(α− 1)

α− 1 β

)
∈ PGL2(Fq).

This matrix acts on Fq2 ∼= Fq ⊕
√
t−1Fq as the multiplication by β + (α− 1)

√
t−1, which completes

the proof.

Due to this lemma, to find g0 that acts on C0(Fq) transitively, it is sufficient to find a primitive
root of Fq2 of the form (2.5). To attain this, we use the following result by Cohen:

Theorem 2.8 ([Coh83, Theorem 1.1]). Let {θ1, θ2} be a basis of Fq2 over Fq and let a1 be a non-
zero member of Fq. Then there exists a primitive root of Fq2 of the form a1θ1 + a2θ2 for some
a2 ∈ Fq.
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Corollary 2.9. There exists a primitive root of Fq2 of the form

β + (α− 1)
√
t−1 ∈ F∗q2

where α, β ∈ Fq satisfy α2 − tβ2 = 1.

Proof. By applying Theorem 2.8 to the basis
{

1,
√
t−1
}

, we find c ∈ Fq such that

ξ := c− t

2

√
t−1 ∈ Fq2

is a primitive root of Fq2 . We claim that ξ−1 can be expressed as the required form. Let us write

ξ−1 = β + (α− 1)
√
t−1, then

ξ =
β

β2 − t−1(α− 1)2
− α− 1

β2 − t−1(α− 1)2

√
t−1.

Equating the coefficients of
√
t−1 in the above two expressions for ξ, we obtain

t

2
=

α− 1

β2 − t−1(α− 1)2

which implies that (α− 1)2 − tβ2 = −2(α− 1), thus α2 − tβ2 = 1, as required.

2.3 Induced actions on the projective plane

Here we complete the proof of Theorem 2.1. We will first treat the case when q is odd using what
we have established in the previous sections. The case q = 2 will be treated separately with a
similar strategy, where we will also prove that the image of σq contains Alt(P2(Fq)) for q = 2m ≥ 4.

2.3.1 Proof of Theorem 2.1 for odd q Proposition 2.6 and Corollary 2.9 imply the existence
of a birational self-map g : Q 99K Q acting transitively on the Fq-points of a smooth fiber C0 and
leaving all the other Fq-fibers fixed. Recall that πP : Q 99K P2 is the projection from the node P of
a degenerate fiber of the fibration πL : Q 99K P1. In particular, it has P as the only indeterminacy
point and contracts the two branches of the degenerate fiber. In particular, it maps the smooth
fiber C0 isomorphically onto a smooth conic C := πP (C0) ⊂ P2.

Proposition 2.10. The composition f := πP ◦ g ◦π−1
P : P2 99K P2 satisfies the following properties:

(1) f ∈ BCr2(Fq).

(2) f fixes all the Fq-points away from the conic C.

(3) f acts transitively on C(Fq) and thus permutes as a (q + 1)-cycle.

(4) There exists a triple of collinear points P1, P2, P3 ∈ P2(Fq) such that f(P1), f(P2), f(P3) are
not collinear.

In particular, the induced permutation on P2(Fq) by f does not preserve collineation, and moreover,
induces a (q + 1)-cycle, and hence has odd sign as q is odd.
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Proof. Let us prove the statements one-by-one.

(1) We have the commutative diagram:

BlPQ

π̃P|| ��

g̃
// BlPQ

��

π̃P

""

P2

π̃−1
P

44

π−1
P

// Q g
// Q πP

// P2.

Note that this diagram factorizes f = πP ◦ g ◦ π−1
P as f = π̃P ◦ g̃ ◦ π̃−1

P . The two lines passing
through P in Q become disjoint (−1)-curves on BlPQ that are Galois conjugate to each other,
and the morphism π̃P is the blow-down of these two lines. Hence π̃P and π̃−1

P are both defined
at all Fq-points.

It suffices to show that g̃ induces a bijection on the Fq-points of BlPQ. Indeed, g induces
a bijection on Q(Fq) and fixes P . Hence g̃ induces a birational self-map, and thus an auto-
morphism, on the exceptional curve over P . As a result, f is defined at all Fq-points of P2.
By symmetry, the same argument applies to f−1, and hence f ∈ BCr2(Fq).

(2) Let A ∈ P2(Fq) \ C(Fq). Then π−1
P (A) ∈ Q \ C0, which implies g(π−1

P (A)) = π−1
P (A). Hence

f(A) = πP ◦ g ◦ π−1
P (A) = A.

(3) This follows from the relation f = πP ◦ g ◦ π−1
P and the fact that g permutes the points of

C0(Fq) as a (q + 1)-cycle.

(4) Take an Fq-point B on C and consider the tangent line ` := TBC ⊂ P2. Then ` ∩ C = {B}.
The map f acts as the identity on all the Fq-points of ` except for B, and sends B to another
point on C not lying on `. Consequently, the map does not preserve collinearity.

Theorem 2.1 in the case of odd q is then a consequence of Theorem 2.2 and Proposition 2.10.

Remark 2.11. Recall that Q and L are defined as

Q :=
{
x2 − ty2 + z2 = w2

}
⊂ P3, L := {z = w = 0} ⊂ P3,

and P = [0 : 0 : 1 : 1] ∈ Q. Projection from P defines a birational map

πP : Q 99K P2 : [x : y : z : w] 7→ [x : y : w − z]

whose inverse is given by

π−1
P : P2 99K Q : [x : y : u] 7→ [2ux : 2uy : x2 − ty2 − u2 : x2 − ty2 + u2].

On the other hand, the map g has the form

g : Q 99K Q : [x : y : z : w] 7→ [αx+ tβy : βx+ αy : γz : γw]

where α, β, γ are homogeneous in z, w and satisfy α2 − tβ2 = γ2. These expressions allow one to
compute f = πP ◦ g ◦ π−1

P explicitly. Also recall that the smooth fiber C0 = π−1
L ([0 : 1]) lies on

H := {z = 0}. To compute the action of f on C = πP (C0), one may identify H with the codomain
P2 of πP via [x : y : u] 7→ [x : y : 0 : u].

10
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2.3.2 The construction in characteristic 2 We first explain the construction over F2. Con-
sider the quadric surface given by

Q :=
{
x2 + xy + y2 + z2 + x(z + w) + y(z + w) + zw = 0

}
⊂ P3,

As before, let L := {z = w = 0} ⊂ P3. We consider the projection P3 99K P1 given by [x : y : z :
w] 7→ [z : w]. Restricting the map to Q, we get a conic bundle πL : Q→ P1. We analyze the conics
on the three F2-fibers:

C0 := π−1
L ([0 : 1]) ∼= {[x : y : u] : x2 + xy + y2 + xu+ yu = 0}

C1 := π−1
L ([1 : 0]) ∼= {[x : y : u] : x2 + xy + y2 + z2 + xz + yz = 0}

C2 := π−1
L ([1 : 1]) ∼= {[x : y : u] : x2 + xy + y2 = 0]}

where we used the identification H = {z = 0} ∼= P2 with homogeneous coordinates x, y and u
mentioned in Remark 2.11.

One can check that C0 is smooth, while C1 and C2 are both union of two F4-lines meeting at a
single F2-point. In fact,

C0(F2) = {[0 : 0 : 1], [1 : 0 : 1], [0 : 1 : 1]}
C1(F2) = {[1 : 1 : 1]}
C2(F2) = {[0 : 0 : 1]}

Consider the map g : P3 → P3, given by [x : y : z : w] 7→ [y : x : z : w]. By the symmetry of
the defining equation, the quadric Q is preserved under g. It is also evident that g acts as a single
transposition on C0(F2), and trivially on both C1(F2) and C2(F2). Using the same argument given
in Proposition 2.10, we see that the induced map f = πP ◦ g ◦ π−1

P is an element of BCr2(F2).
Furthermore, the induced permutation f : P2(F2) → P2(F2) is odd, as it transitively permutes
the three points of C0(Fq). It also does not preserve collineation for the same reason explained in
Proposition 2.10 (4). By Theorem 2.2, σ2(BCr2(F2)) = Sym(P2(F2)).

For q = 2m ≥ 4, following Cantat, we use the quadric

Q := {x2 + rxy + sy2 + z2 + x(z + w) + y(z + w) + zw = 0}

where r, s ∈ Fq are chosen so that the polynomial X2 +rX+s = 0 has no roots in the field Fq. The
map g : P3 → P3, given by [x : y : z : w] 7→ [y : x : z : w] preserves the quadric. It can be checked
that the fiber C0 := π−1

L ([0 : 1]) is a smooth conic. Using the same argument in Proposition 2.10,
we see that the induced map f = πP ◦ g ◦ π−1

P is an element of BCr2(Fq). Moreover, the induced
permutation f : P2(Fq) → P2(Fq) does not preserve collineation by the same argument given in
Proposition 2.10 (4) that involves looking at the tangent line: f fixes all the Fq-points on the
tangent line TPC except for P , while P is sent by f to another Fq-point away from TPC. By
Theorem 2.2, we deduce that σq(BCr2(Fq)) ⊃ Alt(P2(Fq)).

3 Birational invariance of parity

In this section, we prove that automorphisms of Pn for n ≥ 1 over Fq, where q = 2m ≥ 4, induce
only even permutations on the set of rational points. This result allows us to study the parity

11
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problem without specifying a coordinate system on Pn. Then we prove Theorem 1.2, namely, the
invariance of parity under conjugations by birational maps. The proof of this theorem is built on
the fact that one can resolve a birational map between surfaces over a perfect field via a sequence
of blow-ups at closed points.

Example 3.1. It is easy to construct a counterexample to Theorem 1.2 for odd q and q = 2.
Consider an element g ∈ PGL3(Fq) of the form

g =

a b 0
c d 0
0 0 1

 .

Note that g fixes p = [0 : 0 : 1]. Let X be the blow-up of P2 at p. Then g lifts to an automorphism

on X which acts on the exceptional P1 as

(
a b
c d

)
, and the parity is altered via the lifting if this

matrix acts as an odd permutation on P1(Fq). For example, one can choose

(
1 0
0 α

)
if q is odd,

where α is a generator for the multiplicative group F∗q , and choose

(
1 1
0 1

)
if q = 2.

3.1 Parities induced by linear transformations

According to Waterhouse [Wat89], the group GLn+1(Fq) is generated by two elements An and Bn
for all q and n ≥ 1, which clearly descend to generators for PGLn+1(Fq). Therefore, to prove that
PGLn+1(Fq) ⊂ Alt(Pn(Fq)), it is sufficient to verify that An and Bn induce even permutations.

The general formulas for An and Bn depend on whether n = 1 or n ≥ 2. Let us denote by In+1

the identity matrix of size n + 1, and Ei,j the square matrix of size n + 1 with 1 at the (i, j)-th
entry and zeros elsewhere. In the case n ≥ 2, we can choose a generator α for the multiplicative
group F∗q , and let

An = In+1 + (α− 1)E2,2 + En+1,1, Bn = E1,2 + E2,3 + · · ·+ En+1,1.

For example, when n = 2 we get

A2 =

1 0 0
0 α 0
1 0 1

 , B2 =

0 1 0
0 0 1
1 0 0

 .

In the case n = 1 and q > 2, we choose a generator β for the multiplicative group F∗q2 , and define

α := βq+1, s := Tr(β) = β + βq, r := −Norm(β) = −βq+1.

Then we let A1 =

(
0 r
1 s

)
and B1 =

(
α 0
0 1

)
. We emphasize that the case n = 1 and q = 2 is not

covered by these formulas. In this last case, GL2(F2) is generated by

(
0 1
1 1

)
and

(
1 1
0 1

)
which

act respectively as a 3-cycle and a 2-cycle on P1(F2).

12
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Lemma 3.2. Both A1 and B1 induce even permutations on P1(Fq) where q = 2m ≥ 4.

Proof. The element α is a generator for F∗q ∼= Z/(q − 1)Z, so B1 fixes [1 : 0] and [0 : 1] and acts as
a (q − 1)-cycle on P1(Fq) \ {[1 : 0] ∪ [0 : 1]} ∼= F∗q , which is even for all q = 2m ≥ 2. On the other
hand, A1 can be factorized as(

0 r
1 s

)
=

(
r 0
0 1

)(
1 0
s 1

)(
0 1
1 0

)
=: A11A12A13.

Among the factors:

• A11 has the same parity as B1 since r = −α = α.

• A12 fixes [0 : 1] and acts on P1(Fq)\{[0 : 1]} ∼= Fq as a translation by s, which is a composition
of q/2 transpositions (because char(k) = 2) and thus even for q = 2m ≥ 4.

• A13 is an involution fixing [1 : 1], so it is a composition of q/2 transpositions which is even
for q = 2m ≥ 4.

As a result, A1 acts as a compositions of three even permutations, so A1 is even.

Lemma 3.3. Assume n ≥ 2. Then An induces an even permutation on Pn(Fq) for q = 2m ≥ 2.

Proof. One can verify directly that An = TnMn, where

Tn :=


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
1 0 · · · 1

 , Mn :=


1 0 · · · 0
0 α · · · 0
...

...
. . .

...
0 0 · · · 1

 .

Note that Mn has an odd order q − 1, so its action is even. Therefore, it is sufficient to prove that
Tn induces an even permutation. First, by writing Tn = In+1 + En+1,1, we obtain

T 2
n = In+1 + 2En+1,1 + E2

n+1,1 = In+1,

so Tn is an involution, thus its action on Pn(Fq) is a product of disjoint transpositions. Second, Tn
acts on the homogeneous coordinates as

[x0 : x1 : ... : xn] 7→ [x0 : ... : xn−1 : x0 + xn],

so its fixed locus is the hyperplane {x0 = 0}. Hence the number of transpositions in Tn equals

1

2

(
|Pn(Fq)| − |Pn−1(Fq)|

)
=

1

2

(
qn+1 − 1

q − 1
− qn − 1

q − 1

)
=

1

2

(
qn+1 − qn

q − 1

)
=
qn

2
,

which is even for n ≥ 2 and q = 2m ≥ 2.

Lemma 3.4. Assume n ≥ 2. If q = 2m ≥ 4, then the action of Bn on Pn(Fq) is even. If q = 2,
then the action is odd when n = 2` − 1 for some ` and even otherwise.

13



BIRATIONAL INVARIANCE OF PARITY

Proof. We choose a generator b ∈ Gal(Fqn+1/Fq) ∼= Z/(n+ 1)Z and an element θ ∈ Fqn+1 such that

{θi := bi(θ) : i = 0, . . . , n} ⊂ Fqn+1

form a normal basis over Fq. This identifies the underlying affine space Fn+1
q of Pn as

Fqθ0 ⊕ Fqθ1 ⊕ · · · ⊕ Fqθn ∼= Fqn+1

where a point (x0, . . . , xn) ∈ Fn+1
q corresponds to x0θ0 + · · ·+ xnθn ∈ Fqn+1 . Since b(θi) = θi+1 for

i = 0, . . . , n− 1 and b(θn) = θ0, we have

b(x0θ0 + x1θ1 + · · ·+ xnθn) = xnθ0 + x0θ1 + · · ·+ xn−1θn,

which identifies the multiplication of Bn on Fn+1
q from the left as the action of b−1 on Fqn+1 .

Therefore, it is sufficient to compute the parity of the action of b on Fqn+1 .
Let us write n + 1 = u2` where u is odd. Then the parity of bu is the same as the parity of b

and the cycle decomposition of bu contains only 2r-cycles for r ≥ 0. There is a filtration of Fqn+1

invariant under the action of bu:

Fqu ⊂ · · · ⊂ F
qu2r−1 ⊂ Fqu2r ⊂ · · · ⊂ F

qu2`
= Fqn+1 .

For each 1 ≤ r ≤ `, there are qu2r − qu2r−1
many elements in Fqu2r \ Fqu2r−1 , and the bu-orbit of

each element has size [Fqu2r : Fqu ] = 2r. Therefore, the number of 2r-cycles in bu equals

1

2r
|Fqu2r \ Fqu2r−1 | =

1

2r
(qu2r − qu2r−1

).

On the quotient space Pn(Fq) = P(Fqn+1), which we consider as the set of Fq-lines in Fn+1
q through

the origin, the number of 2r-cycles for the action of bu becomes

1

2r

(
qu2r − qu2r−1

q − 1

)
=
qu2r−1

2r

(
qu2r−1 − 1

q − 1

)
. (3.1)

• Suppose q = 2m ≥ 4. Then m ≥ 2, thus mu2r−1 − r > 0 for u ≥ 1 and 1 ≤ r ≤ `. Hence

qu2r−1

2r
=

2mu2r−1

2r
= 2mu2r−1−r (3.2)

is even. As the fraction qu2
r−1−1
q−1 is clearly an integer, we conclude that the number of 2r-cycles

in bu when acting on Pn(Fq) is even for all 1 ≤ r ≤ `, thus the action is even itself.

• Suppose q = 2 and n = 2` − 1 for some `. Note that ` ≥ 2 as n ≥ 2. Then m = 1 and u = 1.
In this case, (3.2) equals 1 for r = 1 and is even for 2 ≤ r ≤ `. This implies that (3.1) equals
1 for r = 1 and is even for 2 ≤ r ≤ `. As a result, the action of bu on Pn(Fq) consists of one
2-cycle and an even number of 2r-cycle for each 2 ≤ r ≤ `, thus is an odd action.

• Suppose q = 2 and n 6= 2` − 1 for all `. Then m = 1 and u > 1. This implies that (3.2) is
even for 1 ≤ r ≤ `. We conclude that the action of bu is even as in the first case.

These cover all the cases, so the proof is done.
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Proposition 3.5. For n ≥ 1 and q = 2m ≥ 4, the action of PGLn+1(Fq) on Pn(Fq) is even.

Proof. The case n = 1 (resp. n ≥ 2) follows from Lemma 3.2 (resp. Lemmas 3.3 and 3.4).

The parity of a permutation is invariant upon raising to an odd power, so we usually assume
the order of a permutation to be a power of 2 when studying the parity. For a permutation induced
by a linear transformation, the following result shows that we can say more about the cycle type if
its order is a power of 2.

Corollary 3.6. Let n ≥ 1 and q = 2m ≥ 4. Suppose that σ ∈ PGLn+1(Fq) induces a permutation
of order 2r on Pn(Fq). Define ci, where 0 ≤ i ≤ r, to be the number of 2i-cycles in the cycle
decomposition. Then c0 is odd and the sum c1 + · · ·+ cr is even. In the case n = 1, there are only
two possibilities:

(1) c0 = q + 1 and ci = 0 for all 1 ≤ i ≤ r, i.e., σ is the identity.

(2) c0 = 1 and ci = 0 for all but one 1 ≤ i ≤ r. The unique nonzero cj where 1 ≤ j ≤ r equals
q/2j > 1.

Proof. Because a 2i-cycle is odd for all i ≥ 1, the sum c1 + · · · + cr must be even due to Proposi-
tion 3.5. Then the relations

|Pn(Fq)| = qn + · · ·+ q + 1 = c0 + 2c1 + · · ·+ 2rcr

imply that c0 is odd. Assume n = 1 and that σ is not the identity. Then σ fixes at most 2 points,
which implies that c0 = 1. Let 1 ≤ j ≤ r be the smallest integer such that cj 6= 0. Then σ2j

becomes the identity as it fixes 1 + 2jcj ≥ 3 points. It follows that every nontrivial cycle in σ has
the same size 2j . If 2j = q, then σ is a q-cycle thus is odd, which is impossible by Proposition 3.5.
Hence 2j < q, and the equalities |P1(Fq)| = q + 1 = 1 + 2jcj imply that cj = q/2j > 1.

3.2 Projective bundles over finite sets

We define a Pn-bundle over a finite set B to be the disjoint union of projective n-spaces:

P =
∐
i∈B

Pi, Pi ∼= Pn, equipped with the map h : P → B : Pi 7→ i.

Consider the set P(k) of k-points on P. We are interested in elements σ ∈ Sym(P(k)) of the form:

(1) For every i ∈ B, there exists j ∈ B such that σ(Pi(k)) = Pj(k). Then hσh−1 is well-defined
as an element of Sym(B).

(2) Each bijection σ : Pi(k)→ Pj(k) is induced by a linear isomorphism over k.

Note that such elements form a subgroup of Sym(P(k)).

Lemma 3.7. Let k = Fq, q = 2m ≥ 4, and σ ∈ Sym(P(k)) be an element satisfying (1) and (2).
Then σ and σB := hσh−1 ∈ Sym(B) have the same parity.
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Proof. The parity of a permutation is invariant upon raising it to an odd power, so we can assume
that both σ and σB consist of disjoint cycles of sizes powers of 2. Suppose that

O := {p1, ..., pr} ⊂ B, r = 2` ≥ 1,

is one of the orbits of σB. Then the set of k-points in h−1(O) ⊂ P is invariant under σ. Therefore,
it suffices to prove the statement under the hypothesis O = B. Note that the case r = 1 follows
immediately from Proposition 3.5. Hence we assume that r ≥ 2, in which case σB is odd, and so
our goal is to prove that σ is also odd.

Fix an element p ∈ O. The assumption O = B implies σrB = id, so σr acts on the k-points of
h−1(p) ∼= Pn. Denote this action as σrp. Observe that, in the cycle decompositions, a u-cycle in σrp
contributes a (ur)-cycle in σ, and every cycle in σ is obtained this way. Assume that σrp consists
of ci many 2i-cycles where i ≥ 0. Then σ consists of ci many (2ir)-cycles, which are all odd since
the assumption r ≥ 2 implies 2ir ≥ 2. By Corollary 3.6 applied to σrp, the sum

∑
i≥0 ci, which also

equals the number of cycles in σ, is an odd integer. We conclude that σ is odd.

3.3 Proof of the birational invariance of parity

Let X and Y be smooth surfaces over k = F2m where m ≥ 2. Given α ∈ BBirk(X), β ∈ BBirk(Y ),
and a birational map h : X → Y over k that satisfy α = h−1βh, we prove Theorem 1.2, namely,
that the permutations induced by α and β on X(k) and Y (k), respectively, have the same parity.
Note that, if h induces a bijection between X(k) and Y (k), then the relation α = h−1βh implies
immediately that the induced permutations have the same cycle type and thus the same parity.
The main content of Theorem 1.2 consists in that the same conclusion holds even if h is not a
bijection on the sets of rational points.

In the following, we establish Theorem 1.2 from scratch, starting from the case when the bira-
tional map h : X → Y is a blow-up at a set of closed points, then the case when h is a birational
morphism, and finally the full generality.

Lemma 3.8. Let Y be a smooth surface over k = F2m, m ≥ 2, and h : X → Y be a birational
morphism over k that blows up a set B ⊂ Y (k) of closed points. Define B := B ∩ Y (k) and
E := h−1(B) ⊂ X. Pick β ∈ BBirk(Y ) and assume that α := h−1βh ∈ BBirk(X). Then we have
α(E) = E and β(B) = B.

Proof. The map α does not contract any curve in E. Indeed, every irreducible component of E
is a rational curve over k, thus contains more than one k-points. If α contracts any of them, we
would have α /∈ BBirk(X), contradiction. It follows that α(E) = h−1βh(E) = h−1β(B) is a curve,
so β(B) ⊂ B. Since β induces a bijection on Y (k), we have β(B) = B, and hence α(E) = E.

Lemma 3.9. Retain the setting from Lemma 3.8. Then the actions of α on X(k) and β on Y (k)
have the same parity.

Proof. Let U := X\E and V := Y \B. Note that h|U : U → V , though may not be an isomorphism,
induces a bijection on the sets of k-points. By Lemma 3.8, we have α(U) = U and β(V ) = V , and
the relation α = h−1βh implies α|U = (h|U )−1(β|V )(h|U ). Hence the restrictions of α to U and β
to V have the same parity when acting on the k-points.

16



BIRATIONAL INVARIANCE OF PARITY

Now consider the actions of α on E and β on B. Note that E is a P1-bundle over B. Restricting
h to E(k) induces the map among finite sets

E(k) ∼= P1(k)×B(k)
h|E(k)

// B(k),

as well as the relation β|B(k) = h|E(k) ◦α|E(k) ◦ (h|E(k))
−1. Then the permutations β|B(k) and α|E(k)

have the same parity by Lemma 3.7. This completes the proof.

The following two lemmas will be needed in the proofs of the remaining cases.

Lemma 3.10. Let X and Y be smooth surfaces over a perfect field k and h : X → Y a birational
morphism over k. Then we can factorize h as a sequence of blow-ups at closed points

h : X = Yr
εr // Yr−1

εr−1
// · · · ε2 // Y1

ε1 // Y.

Moreover, this sequence can be arranged in the way that the points in Yi blown up by εi+1 lie in the
exceptional locus of εi.

Proof. According to [Man86, Lemma 18.1.3], we can factorize h as a sequence of blow-ups at closed
points. To prove the second statement, assume that there exists a point x ∈ Yi blown up by εi+1

but not in the exceptional locus of εi. Consider the commutative diagram

Y ′i+1

ε′i+1
//

∼
��

Y ′i
ε′i //

Blx
��

Yi−1

Yi+1
εi+1

// Yi
εi // Yi−1

where ε′i is εi followed by the blow-up at x, and ε′i+1 blows up the same points as εi+1 except for
x. Then Y ′i+1 and Yi+1 are canonically isomorphic and we can replace εiεi+1 by ε′iε

′
i+1. Repeating

this process from i = r − 1 to i = 1 gives us the desired sequence.

Lemma 3.11. Let Y be a surface, β be a birational self-map on Y , and q ∈ Y be a closed point at
which β is well-defined. Let ε : Y ′ → Y be the blow-up at the set {q, β(q)}, and Eq be the exceptional
divisor over q. Then the composition ε−1βε, which is a birational self-map on Y ′, is well-defined
everywhere on Eq.

Proof. Let q′ := β(q) and Eq′ ⊂ Y ′ be the exceptional divisor over q′. Denote β′ := ε−1βε. Then
we have the commutative diagram

Eq
� � // Y ′

ε //

β′

��

Y

β

��

Eq′ // Y ′
ε // Y.

The composition βε : Y ′ 99K Y pulls q′ back as the divisor Eq while q′ is blown up by ε as Eq′ . By
the universal property of blowing up, βε factors through the bottom ε uniquely as

Eq
� � //

β′′i |Eq ∼
��

Y ′
ε //

∃ β′′

��

Y

β

��

Eq′ // Y ′
ε // Y.
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Note that β′′ is well-defined everywhere on Eq and β′′ = ε−1βε = β′. Hence β′ is well-defined
everywhere on Eq.

Now we prove the invariance of parity under conjugations by birational morphisms.

Lemma 3.12. Let X and Y be smooth surfaces over k = F2m, m ≥ 2, and h : X → Y a birational
morphism over k. Pick β ∈ BBirk(Y ) and assume that α := h−1βh ∈ BBirk(X). Then the actions
of α on X(k) and β on Y (k) have the same parity.

Proof. By Lemma 3.10, we can factorize h as

h : X = Yr
εr // Yr−1

εr−1
// · · · ε2 // Y1

ε1 // Y

such that the points in Yi blown up by εi+1 lie in the exceptional locus of εi. Denote β0 := β and
define inductively that

βi := ε−1
i βi−1εi ∈ Birk(Yi), i = 1, . . . , r. (3.3)

Note that βr = α. Let us prove that every βi ∈ BBirk(Yi) by induction. The case i = 0 follows
by definition. Suppose that βi−1 ∈ BBirk(Yi−1) and, to the contrary, that βi /∈ BBirk(Yi). Let
p ∈ Yi(k) be a base-point of βi. Consider the two points

q := εi(p) ∈ Yi−1(k), q′ := βi−1(q) = βi−1εi(p) ∈ Yi−1(k).

There are three possible situations:

(1) q′ is not blown up by εi. This implies that βi is well-defined at p due to (3.3), which contradicts
our assumption.

(2) q′ is blown up by εi while q is not. Let Eq′ ⊂ Yi denote the exceptional divisor over q′. In
this case, p does not lie in the exceptional locus of εi, so it is mapped bijectively to a point
p̃ ∈ X(k) via (εi+1 · · · εr)−1. Relations (3.3) imply that α−1 contracts the proper transform
of Eq′ to p̃, so p̃ is a base-point of α, which contradicts the fact that α ∈ BBirk(X).

(3) q′ and q are both blown up by εi. By Lemma 3.11, the map βi is well-defined everywhere
on the exceptional divisor Eq ⊂ Yi over q. Since p ∈ ε−1

i (q) = Eq, we conclude that βi is
well-defined at p, contradiction.

Since we get contradictions in all possible cases, we conclude that βi ∈ BBirk(Yi), hence the claim
is fulfilled by induction. By Lemma 3.9, the permutations induced by βi for all i, including α and
β, have the same parity.

Before entering the proof of the general case, let us introduce a method about resolving a
birational self-map as a birational permutation. Let X ′ be a smooth surface over a finite field k
and ε : X → X ′ be a birational morphism over k that blows up a set C ⊂ X ′ of closed points with
exceptional locus E ⊂ X. Pick α′ ∈ BBirk(X

′) and define α := ε−1α′ε. Note that α belongs to
Birk(X) but may not belong to BBirk(X) in general.

Lemma 3.13. Retain the notation above. Let O1, . . . , On ⊂ X ′(k) be the orbits of α′ that meet the
center C nontrivially. Note that the preimages of Oj \ C in X make up the subset

B :=
n⋃
j=1

ε−1(Oj \ C) ⊂ X(k) \ E.

Consider the blow-up η : Z := BlBX −→ X. Then the composition η−1αη belongs to BBirk(Z).
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Proof. Let O ⊂ X ′(k) be any of the orbits of α′. Note that, if O ∩C = ∅, then α is well-defined on
the subset (ε−1(O))(k) ⊂ X(k). Assume O ∩ C 6= ∅. Then there are two possibilities:

(a) If O ⊂ C, then one can show that α is well-defined on (ε−1(O))(k) ⊂ X(k) by applying
Lemma 3.11 possibly a multiple of times.

(b) If O 6⊂ C, then there exists q ∈ O \ C such that α′(q) ∈ C and

O \ C = {q, α′−1(q), . . . , α′−`(q)} for some ` ≥ 0.

Note that O \ C is a finite set as we are working over a finite field. In this case, α is
undefined at ε−1

1 (q). Blowing up ε−1
1 (q) will resolve this indeterminacy by Lemma 3.11,

though this will create a new base-point at ε−1(α′−1(q)). By blowing up this point and then
ε−1(α′−2(q)), . . . , ε−1(α′−`(q)) subsequently, the base-points in ε−1O will all be resolved.

By applying the above to O1, . . . , On, we conclude that η−1αη ∈ BBirk(Z).

Proof of Theorem 1.2. We can eliminate the indeterminacy locus of h by a sequence of blow-ups
at closed points [Kol07, Corollary 1.76]

Xr

h̃
,,

εr // Xr−1
εr−1

// · · · ε2 // X1
ε1 // X0 = X

h
��

Y

For each εi where 1 ≤ i ≤ r, let Ei ⊂ Xi be its exceptional locus and Ci−1 := εi(Ei) ⊂ Xi−1 be its
center. We also define Cr := ∅. By Lemma 3.10, we can assume Ci ⊂ Ei for i = 1, . . . , r − 1. Let
α0 := α and define inductively that

αi := ε−1
i αi−1εi ∈ Birk(Xi), i = 1, . . . , r. (3.4)

Let us prove by induction on i that there exists a birational morphism

ηi : Zi −→ Xi such that

{
τi := η−1

i αiηi ∈ BBirk(Zi)

its center Bi ⊂ Xi is disjoint from Ci.
(3.5)

For the initial case i = 1, consider the action of α0 on X(k) and let O1, . . . , On ⊂ X(k) be the
orbits that meet C0 nontrivially. Define

B1 :=

n⋃
j=1

ε−1
1 (Oj \ C0) ⊂ X1(k) \ E1,

and consider the blow-up
η1 : Z1 := BlB1X1 −→ X1.

Then τ1 := η−1
1 α1η1 ∈ BBirk(Z1) by Lemma 3.13. Moreover, B1 is disjoint from E1 by construction.

As C1 ⊂ E1, we conclude that B1 ∩ C1 = ∅. This completes the initial step.
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Assume that there exists an ηi as in (3.5) for some 1 ≤ i ≤ r − 1. Consider the fiber diagram

X ′i+1 := Xi+1 ×Xi Zi

π1
��

π2 // Zi

ηi

��

· · · // Xi+1
εi+1

// Xi
εi // · · ·

where π1 and π2 are the projections to the components of X ′i+1. Note that X ′i+1 is the blow-up of
Xi at the disjoint union Bi ∪ Ci, and we can identify π2 as the blow-up

π2 : X ′i+1
∼= Blη−1

i Ci
Zi −→ Zi.

By hypothesis, we have τi = η−1
i αiηi ∈ BBirk(Zi), which can be lifted to X ′i+1 as

α′i+1 := π−1
2 τiπ2 ∈ Birk(X

′
i+1).

By tracking the fiber diagram above, we obtain

α′i+1 = π−1
2 τiπ2 = π−1

2 η−1
i αiηiπ2 = π−1

1 ε−1
i+1αiεi+1π1 = π−1

1 αi+1π1. (3.6)

Let O1, . . . , On ⊂ Zi(k) be the orbits of the action of τi that satisfy Oj ∩ η−1
i Ci 6= ∅. Define

B′i+1 :=
n⋃
j=1

π−1
2 (Oj \ η−1

i Ci) ⊂ X ′i+1(k)

and consider the blow-up
η′i+1 : Zi+1 := BlB′i+1

X ′i+1 −→ X ′i+1.

Then τi+1 := η′−1
i+1α

′
i+1η

′
i+1 ∈ BBirk(Zi+1) by Lemma 3.13. Define

ηi+1 := π1η
′
i+1 : Zi+1 −→ Xi+1.

Using (3.6), we obtain

τi+1 = η′−1
i+1α

′
i+1η

′
i+1 = η′−1

i+1π
−1
1 αi+1π1η

′
i+1 = η−1

i+1αi+1ηi+1.

Hence ηi+1 satisfies the first requirement in (3.5). For the second requirement, recall that ηi+1 is
constructed by subsequently blowing up ε−1

i+1Bi ⊂ Xi+1 and B′i+1 ⊂ X ′i+1. The set ε−1
i+1Bi is disjoint

from Ci+1 because Ci+1 ⊂ Ei+1 and Bi ∩ Ci = ∅. On the other hand, the image

ηiπ2(B′i+1) = εi+1π1(B′i+1) ⊂ Xi

is disjoint from Ci, so π1(B′i+1) is disjoint from Ei+1 and thus from Ci+1. We conclude that the
center Bi+1 of ηi+1 is disjoint from Ci+1. This completes the inductive step.

Formula (3.5) with i = r gives a birational morphism

ηr : Zr −→ Xr such that τr := η−1
r αrηr ∈ BBirk(Zr).
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As a result, we obtain the commutative diagram

Zr
f

~~

g

  

X
h // Y

where f = ε1 · · · εrηr and g = h̃ηr are birational morphisms. Moreover,

γ := f−1αf = (ε1 · · · εrηr)−1α0(ε1 · · · εrηr) = η−1
r ε−1

r · · · ε−1
1 α0ε1 · · · εrηr = η−1

r αrηr = τr,

which belongs to BBirk(Zr). Using the relations h = gf−1 and β = hαh−1, we deduce that

γ = f−1αf = g−1hαh−1g = g−1βg.

By Lemma 3.12, the actions of α and β on the sets of k-points induce the same parity as the action
of γ, which completes the proof.

4 Birational permutations on rational surfaces

We prove Theorem 1.3 in this section. Using Theorem 1.2, this amounts to showing that over Fq,
q = 2m ≥ 4, permutations induced by the following maps are all even:

• Birational permutations on a conic bundle over P1 preserving the fiber class.

• Automorphisms of a rational del Pezzo surface.

• Elements of BCr2(Fq) of finite order.

One may wonder if there exists a surface over Fq, q = 2m ≥ 4, that admits a birational odd
permutation. Below we exhibit such an example over F4.

Example 4.1. Let us write F4 = F2(ξ), where ξ2 +ξ+1 = 0, and let ξ denote the Galois conjugate
of ξ. Consider the elliptic curve defined by the Weierstrass equation

E : y2 + xy = x3 + 1.

Then j(E) = 1, and the group Aut(E) ∼= Z/2Z is generated by σE : (x, y) 7→ (x, y + x) [Sil09,
Propositions A.1.1 & A.1.2]. One can verify straightforwardly that

E(F2) = {(1, 0), (0, 1), (1, 1), p∞}, E(F4) = E(F2) ∪ {(ξ, 0), (ξ, 0), (ξ, ξ), (ξ, ξ)}

where p∞ denotes the point at infinity. Moreover, the involution σE fixes (0, 1), p∞, and exchanges
points in each of the pairs {(1, 0), (1, 1)}, {(ξ, 0), (ξ, ξ)}, {(ξ, 0), (ξ, ξ)}. In particular, σE acts on
E(F4) as a product of three transpositions and thus is odd. Now consider the P1-bundle

X := P1 × E −→ E

and define σX ∈ Aut(X) by σX(p, q) = (p, σE(q)). Then σX acts on X(F4) as an odd permutation
by Lemma 3.7. In fact, it is not hard to see that this permutation consists of 5 disjoint permutations
of the same type as σE .
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4.1 Birational permutations on conic bundles

Over a finite field k, a conic C ⊂ P2
k can only be one of the followings:

(I) C is smooth, which implies that C ∼= P1
k.

(II) C is a double line.

(III) C = ` ∪ `′ where ` and `′ are conjugate over the quadratic extension.

(IV) C = ` ∪ `′ where ` and `′ are distinct lines both defined over k.

As an analogue of projective bundles over finite sets (see §3.2), given a finite set B, we define a
conic bundle over B to be a union of conics indexed by B:

C =
⋃
i∈B

Ci equipped with the map h : C → B : Ci 7→ i.

Consider the set C(k) of k-points on C. We are interested in elements σ ∈ Sym(C(k)) of the form:

(1) For every i ∈ B, there exists j ∈ B such that σ(Ci(k)) = Cj(k). Then hσh−1 is well-defined
as an element of Sym(B).

(2) Each bijection σ : Ci(k)→ Cj(k) is induced by an isomorphism between conics over k.

Note that such elements form a subgroup of Sym(C(k)).

Lemma 4.2. Let k = Fq, q = 2m ≥ 4, and σ ∈ Sym(C(k)) be an element satisfying (1) and (2).
Then σ and σB := hσh−1 ∈ Sym(B) have the same parity.

Proof. Since the parity of a permutation is invariant upon raising it to an odd power, we can assume
that both σ and σB consist of disjoint cycles of sizes powers of 2. In this setting, each nontrivial
cycle is an odd permutation. Suppose that

O := {p1, ..., pr} ⊂ B, r = 2s ≥ 1,

is any orbit of σB. Then σ acts on the set of k-points on h−1(O) ⊂ C, and it suffices to show that
this action is odd. This reduces the proof to the case O = B.

By property (2), the fibers over O are mutually isomorphic and thus of the same type. If they
are of type (I), then the statement follows from Lemma 3.7. The case of type (II) is covered by
the previous case by passing to the reduced substructure. If they are of type (III), then the node
in each fiber appears as the only k-point in that fiber. This implies that σ and σB have the same
cycle type, thus are both odd.

Assume that the fibers are of type (IV), that is, Ci = h−1(pi) = `i∪`′i where `i and `′i are copies
of P1

k. Let σL denote the action of σ on the set of lines

L := {`1, `′1, `2, `′2, . . . , `r, `′r}.

In this case, the nodes δi := `i ∩ `′i for i = 1, . . . , r form a single orbit under the action of σ. This
forces σL to be one of the following forms:

(i) L has two orbits of size r. In this case, we can relabel the components of Ci as `+i and `−i
such that there is a cycle decomposition σL = (`+1 , . . . , `

+
r )(`−1 , . . . , `

−
r ).
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(ii) L forms a single orbit of size 2r. In this case, we can relabel the components of Ci as `+i and
`−i such that σL = (`+1 , . . . , `

+
r , `
−
1 , . . . , `

−
r ).

In both cases, we have the P1
k-bundles

C± = `±1 ∪ · · · ∪ `±r
h± // O± : `±i

� // p±i .

where O± = {p±1 , ..., p±r } are two copies of O. Taking their (disjoint) union gives a conic bundle

C̃ = C+ q C− h̃=h+qh− // O+ qO−.

Note that the node δi splits as δ+
i ∈ `

+
i and δ−i ∈ `

−
i for each 1 ≤ i ≤ r.

Suppose that case (i) holds. Replacing the cycle (δ1, . . . , δr) in σ by the product

(δ+
1 , . . . , δ

+
r )(δ−1 , . . . , δ

−
r )

defines an element σ̃ ∈ Sym(C̃(k)) that satisfies (1) and (2). Now we have

h̃σ̃h̃−1 = (p+
1 , ..., p

+
r )(p−1 , ..., p

−
r )

which is even. Because the fibers of h̃ are smooth, we conclude that σ̃ is even by the result for
type (I). Since σ has one less odd cycle than σ̃, the parity of σ is odd. If case (ii) holds, we can
define σ̃ ∈ Sym(C̃(k)) by replacing (δ1, . . . , δr) in σ with the cycle

(δ+
1 , . . . , δ

+
r , δ

−
1 , . . . , δ

−
r ).

Then σ̃ satisfies (1) and (2), and we have

h̃σ̃h̃−1 = (p+
1 , ..., p

+
r , p

−
1 , ..., p

−
r )

which is odd. We conclude in a similar way that σ̃ is odd, which implies that σ is odd.

For our applications of the above lemma, we are interested in the case when B is the set of
k-points on a curve. The following corollary is then immediate.

Corollary 4.3. Let C → D be a conic bundle over a curve D over k = Fq, q = 2m ≥ 4. Suppose
that f ∈ BBirk(C) preserves the conic bundle structure, and let ρ(f) ∈ Aut(D) be the induced
automorphism on D. Then

• the actions of f on C(k) and ρ(f) on D(k) have the same parity, and

• f induced an even permutation on C(k) if D = P1.

Proof. The fibers of C over D(k) form an example of a conic bundle over a finite set. The action
of f on C(k) satisfies properties (1) and (2). Then the first conclusion follows Lemma 4.2, and the
second statement follows from Proposition 3.5.
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4.2 Automorphisms of rational del Pezzo surfaces

Over an arbitrary field k, a del Pezzo surface X is defined to be a smooth projective surface such
that the anticanonical divisor −KX is ample. The degree of X is defined as the integer d = K2

X

which takes values from 1 to 9. For example, a del Pezzo surface X of degree 9 is a Severi–Brauer
surface, namely, a surface that satisfies Xk := X ⊗k k ∼= P2

k
. Below is a simple observation about

automorphisms of del Pezzo surfaces over finite fields:

Proposition 4.4. Let X be a del Pezzo surface over a finite field k. Then Aut(X) is a finite group.

Proof. The anticanonical class −KX is ample and thus −rKX becomes very ample for some r ≥ 1.
The linear system |− rKX | defines an embedding X ↪→ Pn. Since every f ∈ Aut(X) preserves KX ,
it extends to an automorphism on Pn. This defines an embedding Aut(X) ↪→ PGLn+1(k). Then
the statement follows as PGLn+1(k) is a finite group when k is finite.

A surface X over a field k is called rational if there exists a birational map X 99K P2 defined
over k. In this section, we investigate the parities of the permutations on X(Fq) induced by
automorphisms of a rational del Pezzo surface X over Fq for q = 2m ≥ 4. Our goal is to prove the
following theorem:

Theorem 4.5. Automorphisms of a rational del Pezzo surface X over Fq for q = 2m ≥ 4 induce
only even permutations on X(Fq).

We will proceed the proof case-by-case with the degree d going from high to low. As the parity of
a permutation is invariant upon taking an odd power, we will assume the order of a permutation to
be a power of 2 when studying its parity. The following lemma will be useful under this assumption:

Lemma 4.6. Let X be a surface defined over k = Fq, q = 2m ≥ 4, which is rational over the
algebraic closure, and let σ ∈ Sym(X(k)).

(1) If ord(σ) = 2r for some r ≥ 0, then σ has odd number of fixed points.

(2) If ord(σ) = 2 and the number of fixed points equals 1 modulo 4, then σ is even.

Proof. It is well-known that |X(k)| = q2 + aq+ 1 for some non-negative integer a ([Wei56], see also
[Poo17, Proposition 9.3.24]). Since the size of each orbit of σ divides ord(σ) = 2r, we have

q2 + aq + 1 = 2`+ |{fixpoints of σ}| for some ` ≥ 0

which implies (1). Assume ord(σ) = 2, that is, σ is an involution. In particular, σ is a product of
disjoint 2-cycles. If σ has 4b+ 1 fixed points, then the amount of 2-cycles equals

1

2
(|X(k)| − (4b+ 1)) =

1

2
(q2 + aq − 4b)

which is an even number for q = 2m ≥ 4. This proves (2).

Remark 4.7. Over F2, there exists an automorphism of a rational del Pezzo surfaces X which
induces an odd permutation on X(F2). To construct an example, one can start with a quadratic
transformation f ∈ BCr2(F2), that is, f is defined by the linear system of conics passing through
three non-collinear points in P2 that form a Gal(F8/F2)-orbit. By Lemma 5.6, upon composing f
with a linear transformation, we can assume that f is involutive, so that Bs(f) = Bs(f−1). Blowing
up P2 at Bs(f) produces a del Pezzo surface X of degree 6 and resolves f as an automorphism f ′

on X. The action of f on P2(F2) is odd by Lemma 5.7, so the action of f ′ on X(F2) is odd as well
by Theorem 1.2.
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4.2.1 Rational del Pezzo surfaces of degree at least 4 Here we prove that the claim of
Theorem 4.5 holds for rational del Pezzo surfaces of degree d ≥ 4. The case d = 9 is covered by
Proposition 3.5 since a rational Severi–Brauer surface is isomorphic to P2 by Châtelet. (See, for
example, [GS17, Theorem 5.1.3].) We prove the remaining cases below:

Proposition 4.8. Automorphisms of a rational del Pezzo surface X over k = Fq, q = 2m ≥ 4, of
degree 4 ≤ d ≤ 8 induce only even permutations on X(Fq).

Proof. Let g ∈ Aut(X). Because raising to an odd power does not change the parity of a permu-
tation, we can assume the action on X(k) induced by g has order a power of 2. This allows us to
choose a point p ∈ X(k) fixed by g as guaranteed by Lemma 4.6 (1).

Case d = 8. If X is not minimal (over k), then there exists a (−1)-curve E ⊂ X over k, and
contracting E gives a morphism h : X → P2. Every g ∈ Aut(X) leaves E invariant, thus is
conjugate to an automorphism of P2 fixing h(E) ∈ P2. Therefore, g induces an even permutation
on X(k) by Proposition 3.5 and Theorem 1.2.

If X is minimal, then it is a quadric surface obtained by blowing up P2
k at a point of degree 2

(resp. two rational points), and then contracting the proper transform of the unique line through
that point (resp. the two rational points). In particular, over the quadratic extension L := Fq2 ,
we have XL

∼= P1
L × P1

L. Let X7 be the blow-up of X at the fixed point p and let E be the
exceptional curve. Then the two rulings of X ∼= P1

L × P1
L meeting at p lift to disjoint (−1)-curves

E1, E2 ⊂ X7 over L that are conjugate to each other (resp. both rational) over k, and g is conjugate
to g′ ∈ Aut(X7) which leaves the set {E1, E2} invariant. Let h : X7 → P2

k be the contraction of E1

and E2. Then hg′h−1 is a PGL3(k)-action on P2 leaving the set {h(E1), h(E2)} invariant. It then
follows from Proposition 3.5 and Theorem 1.2 that g induces an even permutation.

Case d = 7. There is a unique (−1)-curve E on X that is invariant under both Gal(k/k) and g.
Hence contracting E gives X → X8 where X8 is a del Pezzo surface of degree 8, and g descends to
an automorphism g8 on X8. The result then follows from Theorem 1.2 and Case d = 8.

Case d = 6. Over the algebraic closure, Xk is obtained by blowing up three points a1, a2, a3 in P2
k
,

and it contains six (−1)-curves E1, ..., E6 such that, for i 6= j, we have Ei · Ej = 1 if j ≡ i + 1
(mod 6) and Ei · Ej = 0 otherwise. Note that both Gal(k/k) and g act on this set of (−1)-curves
and preserve the intersection relations.

If p does not lie on any of these (−1)-curves, then the blow-up X5 = Blp(X) is a del Pezzo
surface of degree 5, and g lifts to an automorphism g5 of X5. Over k, the three lines in P2

k
that pass

through p and one of a1, a2, a3 lift to pairwise disjoint (−1)-curves on X5 that meet three disjoint
members of {E1, . . . , E6}. Since this configuration is invariant under the action of both Gal(k/k)
and g5, we can contract the three new (−1)-curves to get X5 → X8, where X8 is a del Pezzo surface
of degree 8, such that g5 descends to an automorphism g8 of X8. By Case d = 8, g8 induces an
even permutation on X8(k), and we finish by applying Theorem 1.2.

Suppose p lies on one of the (−1)-curves, say, E1. If p does not lie on any other (−1)-curve,
then E1 is invariant under both Gal(k/k) and g. We can then blow down E1 to get X → X7 where
X7 is a del Pezzo surface of degree 7, and g descends to an automorphism g7 of X7. By Case d = 7,
g7 induces an even permutation on X7(k), and we finish by applying Theorem 1.2. Otherwise, p
lies on the intersection of two lines, say, E1 and E2. Then the orbit structure of {E1, . . . , E6} under
both Gal(k/k) and g is either {E1} ∪ · · · ∪ {E6} or {E1, E2} ∪ {E3, E6} ∪ {E4, E5}. In either case,
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{E3, E6} is invariant under both Gal(k/k) and g, so blowing down E3, E6 yields X → X8, and g
descends to an automorphism on X8. We finish by applying Case d = 8 and Theorem 1.2.

Case d = 5. Over the algebraic closure, Xk is obtained by blowing up four points b1, b2, b3, b3 in
P2
k
, and it contains ten (−1)-curves, where six of them come from the lines passing through two

of b1, b2, b3, b3, and the remaining four are the exceptional curves. Let us denote the (−1)-curve
passing through bi and bj as Dkl, where k < l and {k, l} = {1, 2, 3, 4} \ {i, j}, and denote the
exceptional curve over bi as Di5. In this setting, we have Dij · Dkl = 1 if i, j, k, l are pairwise
distinct and Dij ·Dkl = 0 otherwise.

If p does not lie on any of the (−1)-curves, then the blow-up X4 = Blp(X) is a del Pezzo surface
of degree 4, and g lifts to an automorphism g4 on X4. Let Ep ⊂ X4 denote the exceptional curve
lying above p. Over k, the lines (resp. the conic) passing through p and one of (resp. all of)
b1, b2, b3, b4 lift to five pairwise disjoint (−1)-curves that intersect Ep. These (−1)-curves form a
set invariant under Gal(k/k), so we can blow them down to get X4 → P2, and g4 also descends to
an automorphism on P2. An application of Proposition 3.5 and Theorem 1.2 does the job.

Suppose p lies on a (−1)-curve, say, D12. If p does not lie on any other Dij , then D12 is invariant
under both Gal(k/k) and g, so we can contract it to get X → X6, where X6 is a del Pezzo surface
of degree 6, and g descends to an automorphism of X6. We are then done by Case d = 6 and
Theorem 1.2. If p lies on another (−1)-curve, we can assume this is D34. One can verify that
these are the only two (−1)-curves that contain p. It follows that D12 ∪D34 is defined over k and
invariant under g. The other (−1)-curves that intersect D12 ∪D34 are D35, D45, D15, D25. Hence
the union D35 ∪ D45 ∪ D15 ∪ D25 is defined over k and invariant under g. These four curves are
pairwise disjoint. Contracting them gives X → P2, and g descends to an automorphism of P2. We
are done after applying Proposition 3.5 and Theorem 1.2.

Case d = 4. First assume that p does not lie on a (−1)-curve. Then the blow-up of X at p is
a cubic surface X3 ⊂ P3, and the exceptional curve E ⊂ X is a line in P3 over k. Each plane
H ⊂ P3 containing E intersects X3 in a residual conic, so the pencil of such planes determines a
conic bundle X3 → P1 over k. Corollary 4.3 yields the claim in this case.

Suppose that p lies on a (−1)-curve. If it lies on only one such curve, then we can blow this
curve down, and g will descend to an automorphism of a del Pezzo surface of degree 5. Then the
claim follows from Case d = 5 and Theorem 1.2. Otherwise, p lies on exactly two (−1)-curves. This
defines a (singular) conic Q on X. We can then define a conic bundle as follows: The linear system
| −KX | embeds X into P4 as an intersection of two quadrics. Consider the pencil of hyperplanes
containing Q. Each hyperplane intersects X at a conic residual to Q. This defines a morphism
X → P1 where the fibers are conics. Since g preserves Q and extends to an automorphism of P4, it
preserves the conic bundle structure. Hence, it follows from Corollary 4.3 that g induces an even
permutation on X(k).

4.2.2 Rational del Pezzo surfaces of low degrees To prove Theorem 4.5 for rational del
Pezzo surfaces of degree d = 1, 2, 3, we first prove a fact about permutations induced by a double
cover structure that appear in these cases.

Lemma 4.9. Let Y = P(a0, . . . , an) be a weighted projective space, with ai the weights, over k = Fq,
where q = 2m ≥ 2. Let π : X → Y be a degree two Galois cover where X is given by

w2 + fw + g = 0,
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for some nonzero homogeneous polynomials f and g in the weighted polynomial ring k[x0, . . . , xn]
of degrees d and 2d, respectively. Let β ∈ Aut(X) be the deck transformation and B ⊂ X be the
ramification locus defined by f = 0. Assume that there is an exact sequence of groups

1 // 〈β〉 // Aut(X)
π∗ // Aut(Y )

where π∗h := πhπ−1 for every h ∈ Aut(X), and that β acts as an even permutation on X(k). Then
every h ∈ Aut(X) induces an even permutation on X(k) \B(k).

Proof. Let h ∈ Aut(X) and denote h0 := π∗h ∈ Aut(Y ). Since h0 fixes the branch locus, h∗0(f) = cf
for some nonzero constant c ∈ k. Let k(X) be the function field of X, which is a quadratic extension
over k(Y ), so by the Artin–Shreier theory, it is given by

u2 + u = z for some z ∈ k(Y ).

In our setting, the equation w2 + fw + g = 0 can be turned into

w′2 + w′ =
g

f2
where w′ =

g

fw
. (4.1)

This is our Artin–Shreier extension. Now consider the double cover coming from the composition
h0π : X → Y . Under this viewpoint, we can repeat the same calculation to conclude that k(X) is
given by the extension

w′′2 + w′′ =
g′

c2f2
where g′ = h∗0(g). (4.2)

It is well-known that (4.1) and (4.2) define the same extension if and only if there exists a ∈ k(Y )
such that

g′

c2f2
=

g

f2
+ a2 + a, or equivalently, g′ = c2g + c2f2(a2 + a). (4.3)

By comparing the degrees among the terms, we conclude that a ∈ k.
Define an automorphism h′ ∈ Aut(X) by

xi 7→ h∗0(xi), w 7→ cw + caf.

Then h′∗(f) = cf and h′∗(g) = g′, and one can use (4.3) to verify that this is well-defined. Let us
show that h′ induces an even permutation on X(k) \B(k) case-by-case:

• (a = 0) Let p ∈ π(X(k)) ⊂ Y (k), singular or non-singular, and not lying on the branch locus,
and Op be the orbit of p under h0. Let r = |Op| and note that π−1(Op) consists of 2r many
k-points. The assumption a = 0 implies that π−1(Op) breaks into two orbits of the same size
under h′. Hence h′ induces an even permutation on π−1(Op). As a consequence, h′ induces
an even permutation on X(k) \B(k).

• (a = 1) The transformation β is defined by β∗(xi) = xi and β∗(w) = w + f , so h′β has the
same formula as h′ but with a = 0, thus induces an even permutation on X(k) \B(k) by the
previous case. The fact that β fixes every point on B implies that it is an even permutation
on X(k) \B(k). Therefore, h′ is an even permutation on X(k) \B(k).
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• (a 6= 0, 1) Keep the notation of p,Op, r as in the case a = 0. Because hr0 fixes p as a point
in Y = P(a1, . . . , an), it rescales the coordinates of p by a constant e respecting the weights.
Since h∗0(f) = cf , plugging in p gives f(h0(p)) = cf(p). This implies ed = cr. As a result, we
get g(hr0(p)) = c2rg(p). On the other hand, applying h∗0 inductively on (4.3) gives

h∗r0 (g) = c2rg + r(a2 + a)c2rf2.

Plugging in p, we get

c2rg(p) = g(hr0(p)) = c2rg(p) + r(a2 + a)c2rf(p)2,

so that r(a2 + a) = 0, which implies r is even. Hence h′∗r(w) = crw, so both points above p
are fixed by h′r. So then π−1(Op) breaks into two orbits of size r under h′, which shows h′

induces even permutation on X(k) \B(k).

Now we finish the proof by showing h is an even permutation on X(k) \B(k). The composition
hh′−1 acts as the identity on Y , so it is either the identity or β. Because h′ and βh′ both induce
even permutations on X(k) \B(k), the result follows.

Proposition 4.10. Automorphisms of a rational del Pezzo surface X over Fq, where q = 2m ≥ 4,
of degree d = 2, 3 induce only even permutations on X(Fq).

Proof. Case d = 2. The anticanonical model of X is a hypersurface of degree 4 in the weighted
projective space P(w, x, y, z) = P(2, 1, 1, 1), defined by

w2 + fw = g,

where f, g ∈ k[x, y, z] have degrees 2, 4 respectively [Kol99, Theorem III.3.5]. The linear system
| −KX | defines a double cover π : X → P2 sending [w : x : y : z] to [x : y : z]. The double cover
involution on X is called the Geiser involution, which we denote by γ. Since KX is preserved under
any automorphism, we have an exact sequence

0 −→ 〈γ〉 −→ Aut(X) −→ Aut(P2).

Let us first prove that γ induces an even permutation. By Lemma 4.6 (2), it suffices to show
that the fixed point set Fix(γ)(Fq) of γ in X(k) has cardinality |Fix(γ)(Fq)| ≡ 1 mod 4. We have

γ([w : x : y : z]) = [−w − f : x : y : z]. (4.4)

In characteristic 2, the fixed locus is given by f = 0, a conic in P2. This contains q + 1 many
Fq-points if it is smooth. If singular, it contains either 1, 2q + 1, or q + 1 many Fq-points if it
consists respectively of two conjugate Fq2-lines, two Fq-lines, or a double line. Because q = 2m ≥ 4,
we have |Fix(γ)(Fq)| ≡ 1 mod 4, as desired.

Now applying Lemma 4.9, we conclude that every h ∈ Aut(X) induces an even permutation on
X(k) \B(k) where B = {f = 0}. Hence, to finish the proof for d = 2, it suffices to show h induces
an even permutation on B(k). Since B is a conic in P2, this follows from Lemma 4.2.
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Case d = 3. Let g ∈ Aut(X) and assume that its action on X(k) has order a power of 2. Then
Lemma 4.6 (1) implies that g has a fixed point p ∈ X(k). If p does not lie on any (−1)-curve of
Xk, then g lifts to the blow-up Blp(X) which is a del Pezzo surface of degree 2. Then the result
follows from Case d = 2 proved above and Theorem 1.2.

Suppose p lies on exactly one (−1)-curve L. Then L is defined over k and invariant under g.
Contracting L gives a del Pezzo surface X4 of degree 4, and g descends to an automorphism of X4.
Then the result follows from Proposition 4.8 and Theorem 1.2.

Suppose p lies on exactly two (−1)-curves L1, L2. The linear system | − KX | embeds X as a
cubic surface in P3. The plane containing L1, L2 intersects X at a third (−1)-curve L3. Since the
union L1∪L2 is invariant under both Gal(k/k) and g, the curve L3 is also invariant under Gal(k/k)
and g. Hence we can contract L3 and conclude as in the previous case.

Suppose p lies on three (−1)-curves L1, L2, L3. Then p is an Eckardt point, and g lifts to an
automorphism g2 on the blow-up X2 := Blp(X), which is a weak del Pezzo surface of degree 2.
The strict transforms of L1, L2, L3 give a Gal(k/k)-invariant set of three disjoint (−2)-curves on
X2. We can contract them to get X2 → Y , and g2 descends to an automorphism on Y . The
morphism X2 → P2 induced by the projection from p factors through Y → P2, which is a double
cover ramified along a singular quartic curve. (The singular points of Y are above the singular
points of the quartic.) The same argument as in Case d = 2 above shows that every automorphism
of Y induces an even permutation. We finish by applying Theorem 1.2.

Proposition 4.11. Automorphisms of a rational del Pezzo surface X over Fq, where q = 2m ≥ 4,
of degree d = 1 induce only even permutations on X(Fq).

Proof. The anticanonical model of X is a hypersurface of degree 6 in the weighted projective space
P(w, z, x, y) = P(3, 2, 1, 1), defined by

w2 + a1wz + a3w = z3 + a2z
2 + a4z + a6

where ai ∈ k[x, y] is homogeneous of degree i [Kol99, Theorem III.3.5]. The linear system | −KX |
defines a rational map

ρ : X 99K P1 : [w : z : x : y] 7→ [x : y]

whose indeterminacy locus consists of the single point O := [1 : 1 : 0 : 0] ∈ X(Fq), and its
general fibers are elliptic curves possessing O as the identity elements. Since KX is fixed under any
automorphism of X, we get an exact sequence

1 −→ G −→ Aut(X) −→ Aut(P1).

Every element in G has the form [w : z : x : y] 7→ [W (w, z, x, y) : Z(w, z, x, y) : x : y] which preserves
the equation of X. Comparing the degrees in x, y yields that W = w or W = w − a1z − a3, and
Z3 = z3. Furthermore, if a4 6= 0, then Z = z, which implies that G ' Z/2Z and is generated by
the Bertini involution

β : [w : z : x : y] 7→ [w − a1z − a3 : z : x : y]. (4.5)

(This involution induces the inverse map under the group law when restricting to a smooth fiber
of the elliptic fibration ρ : X 99K P1.) Suppose that a4 = 0. If a2 6= 0, then Z2 = z2, thus Z = z,
which implies again that G = 〈β〉. If a2 = 0 and there exists a primitive third root of unity δ, then
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G is generated by β and the element [w : z : x : y] 7→ [w : δz : x : y], hence G ' Z/6Z. If there is
no such δ, then G = 〈β〉.

We first show that the involution β induces an even permutation on X(Fq). By Lemma 4.6 (2),
it suffices to show that the fixed point set Fix(β)(Fq) of β in X(Fq) has cardinality 1 mod 4. In
characteristic 2, the fixed locus is given by a1(x, y)z + a3(x, y) = 0. Note that O = [1 : 1 : 0 : 0] is
a fixed rational point, and is the only such point when x = y = 0. We now proceed by two cases
depending on whether a1 = a1(x, y) is the zero polynomial or not:

• If a1 6= 0, each [x : y] ∈ P1(Fq) with a1(x, y) 6= 0 contributes a fixed Fq-points by setting

z = a3(x, y)/a1(x, y),

w2 = z3 + a2(x, y)z2 + a4(x, y)z + a6(x, y),

which gives q more points. Now let [x0 : y0] ∈ P1(Fq) be such that a1(x0, y0) = 0. If
a3(x0, y0) 6= 0, then ρ−1([x0 : y0]) has no fixed Fq-point. If a3(x0, y0) = 0, then ρ−1([x0 : y0])
is a singular affine curve with q-many Fq-points (unique solution in w for every choice of z)
which are all fixed under β. Hence, together with O, we have a total of either q+ 1 or 2q+ 1
fixed Fq-points on X. In particular, |Fix(β)(Fq)| ≡ 1 mod 4.

• If a1 = 0, then a3 6= 0 since X is smooth. Let [x0 : y0] ∈ P1(Fq) be such that a3(x0, y0) = 0.
Then the same argument as above shows that ρ−1([x0 : y0]) has q many fixed Fq-points.
Hence, |Fix(β)(Fq)| = q + 1 ≡ 1 mod 4.

The involution β is also the deck transformation of the double cover X → P(2, 1, 1) which maps
[w : z : x : y] to [z : x : y]. This double cover is defined by | − 2KX |, which is preserved under any
automorphism of X, so there is an exact sequence

1 −→ 〈β〉 −→ Aut(X) −→ Aut(P(2, 1, 1)).

By Lemma 4.9, we get that any h ∈ Aut(X) induces an even permutation on X(Fq) \B(Fq) where
B := {a1z + a3 = 0}. It remains to show that h induces an even permutation on B(Fq). Note that
O ∈ B(Fq) is the unique base-point of | − KX |, so it is fixed under h. Moreover, since we only
care about the rational points, it suffices to consider the reduced subscheme B0 := Bred \ {O}. We
proceed by cases:

• If a1 6= 0 and a1 does not divide a3, then B0 is isomorphic to A1. Hence h|B0 induces an even
permutation as a consequence of Proposition 3.5.

• If a1 6= 0 and a1 divides a3, then B0 is isomorphic to a union of two copies of A1 meeting at
a point, where one copy is a section of the elliptic fibration while the other is a fiber. The
result again follows from Proposition 3.5.

• If a1 = 0, then B0 is isomorphic to a disjoint union of r copies of A1 where 0 ≤ r ≤ 3. The
case r = 0 is trivial, and the case r = 1 follows from Proposition 3.5. If r = 2, we can identify
the disjoint union A1∪A1 as the smooth part of a degenerate conic, so this case is covered by
Lemma 4.2. Suppose that r = 3. If h leaves one A1 invariant while switches the other two,
then the claim follows from Proposition 3.5 and Lemma 4.2. If h acts on the three copies
of A1 as a 3-cycle, we can first compactify each A1 as a P1, which gives us a P1-bundle over
a finite set of 3 elements, and then extend the action of h to this bundle by multiplying it
with a disjoint 3-cycle. This new permutation is even by Lemma 3.7, which implies that the
original permutation is even.
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As a result, the actions of h are even on X(Fq) \B(Fq) and B(Fq), thus is even on X(Fq).

Proof of Theorem 4.5. Let d = K2
X be the degree of X. The claim follows from Proposition 3.5

for d = 9, from Proposition 4.8 for 4 ≤ d ≤ 8, from Proposition 4.10 for d = 2, 3, and from
Proposition 4.11 for d = 1.

4.3 Birational self-maps of finite order

Lemma 4.12. Let k be a perfect field. Suppose G ⊂ Cr2(k) is a finite subgroup. Then there exists a
surface X together with a birational map φ : X 99K P2 such that there is an injective homomorphism

φ∗ : G ↪→ Aut(X) : g → φ−1gφ. (4.6)

Moreover, X can be minimal with respect to G in the sense that

(1) X admits a structure of a conic bundle with Pic(X)G ∼= Z2, or

(2) X is isomorphic to a del Pezzo surface with Pic(X)G ∼= Z.

Proof. The first statement can be proved by the same argument as in [DI09, Lemma 3.5]. Now
consider G as a subgroup of Aut(X). Assume that X is not minimal with respect to G, i.e., there
exists a surface Y and a birational morphism h : X → Y together with an inclusion

h∗ : G ↪→ Aut(Y ) : g → h−1gh

such that the rank of Pic(Y )G is strictly less than the rank of Pic(X)G. This process terminates
at either (1) or (2) by [Isk79, Theorem 1G].

As a corollary, given f ∈ BCr2(k) of finite order, we can always conjugate it to an automorphism
on a minimal surface. This reduces the parity problem for such elements to the problem on the
parities induced by the automorphisms on a conic bundle or a del Pezzo surface.

Proof of Theorem 1.3. The statement for birational permutations on a conic bundle over P1 fol-
lows from Corollary 4.3. The statement for automorphisms of del Pezzo surfaces follows from
Theorem 4.5. For birational permutations conjugate to maps of the previous two types, we apply
Theorem 1.2. Note that this covers the elements in BCr2(Fq) of finite order due to Lemma 4.12.

5 Non-existence of odd permutations

In this section, we produce a list of generators for BCr2(k) where k is a perfect field. Then we
conclude the proof of Theorem 1.1 by showing that the generators in this list induce only even
permutations over k = F2m for m ≥ 2. Throughout this section, we say a smooth zero-dimensional
subscheme of a del Pezzo surface X (resp. a conic bundle X) is in general position if the blow-up
of X at the subscheme is still a del Pezzo surface (resp. a conic bundle over the same base).

31



NON-EXISTENCE OF ODD PERMUTATIONS

5.1 A list of generators over perfect fields

Lemma 5.1. Let k = Fq for q = pm, where p ≥ 2 is a prime and m ≥ 1.

(1) Let p, p′, q, q′ be four points of degree 2 in P2 in general position. Then there exists A ∈
Aut(P2) that sends p, p′ onto q, q′.

(2) Let p, q be two points of degree 4 in P2 in general position. Then there exists A ∈ Aut(P2)
that sends p onto q.

Proof. To prove (1), let p1, p2 (resp. p′1, p
′
2, resp. q1, q2 resp. q′1, q

′
2) be the geometric components

of p (resp. p′ resp. q resp. q′). Then each pi, p
′
i, qi, q

′
i is defined over Fq2 , i = 1, 2, and there exists

a unique Fq2-automorphism A of P2 that sends pi onto qi and p′i onto q′i for i = 1, 2. For any
g ∈ Gal(Fq2/Fq) we have

(AgA−1)(qi) = Ag((pg
−1

i )g) = (Apg
−1

i )g = (qg
−1

i )g = qi.

In particular, AgA−1 is the identity map for all g ∈ Gal(Fq2/Fq). Hence A is defined over Fq.
To prove (2), let p1, p2, p3, p4 (resp. q1, q2, q3, q4) its geometric components of p (resp. q). Then

each pi and qi is defined over Fq4 , i = 1, 2, and over Fq2 , p (resp. q) splits into two orbits, say {p1, p2}
and {p3, p4} (resp. {q1, q2} and {q3, q4}). By (1), there exists a Fq2-automorphism A of P2 that

sends pi onto qi, i = 1, . . . , 4. As analogously to above, we obtain that AgA−1qi = (Apg
−1

i )g = qi
for any g ∈ Gal(Fq2/Fq) and for i = 1, . . . , 4; hence A is defined over Fq.

Let S be a smooth projective surface over a perfect field k, B a point or a curve defined over
k, and π : S → B a surjective morphism over k. We say that S/B is a Mori fibre surface if π has
connected fibres, the relative Picard rank ρ(S/B) of S over B is ρ(S/B) = 1 and −KS is π-ample,
that is −KS ·C > 0 for all curves C contracted by π. A Sarkisov link is a birational map φ : S 99K S′

between two Mori fibre spaces π : S → B and π′ : S′ → B′ that is one of the following four types:

Type I. B is a point, B′ is a curve and ϕ is the blow-up of a point.

Type II. B ' B′, and φ = η2η1, where η1 is the blow-up of a point p = {p1, . . . , pd} of degree
d with those pi in general position, and η2 is the contraction of an orbit of (−1)-curves of size e.
We write φ = fde if we want to emphasize the degree of the base-point of φ.

Type III. the inverse of a link of type I, i.e. B is a curve, B′ is a point and φ is the contraction
of a Galois-orbit of disjoint (−1)-curves defined over the algberaic closure of k.

Type IV. S = S′ and B,B′ are both curves. If S is rational, then B = B′ ' P1 and the φ is
the exchange of the two fibrations.

Proposition 5.2. Let X → B and X ′ → B′ be Mori fibre surfaces and ψ : X 99K X ′ a birational
map. Then there is a decomposition ψ = φr · · ·φ1 into Sarkisov links and isomorphism of Mori
fibre surfaces such that

(1) for i = 1, . . . , r − 1, φi+1φi is not an automorphism,

(2) for i = 1, . . . , r, every base-point of φi is a base-point of φr · · ·φi.

Proof. The claim follows from the proof of [Isk96, Theorem 2.5], see also [BM14, Proposition 2.7].
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Remark 5.3. In particular, if ψ induces a map X(k) → X ′(k), then the link φ1 does not have
any rational base-points. Moreover, the rational base-points of ψ(φ1)−1 = φr · · ·φ2 are exactly the
base-points of (φ1)−1. Since φ2φ1 is not an automorphism, φ2 does not have a rational base-point.

The proof of the following proposition is similar to the proof of [BM14, Theorem 1.2], which
shows that BCr2(R) is generated by Aut(P2) and elements of BCr2(R) of degree 5; the latter are in
family (1) and they are the only non-linear maps in the generating set from Lemma 5.4 that exist
over k = R.

A surface Xd, X
′
d denote del Pezzo surfaces of degree d and Q,Q′ del Pezzo surfaces of degree

8 with ρ(Q) = ρ(Q′) = 1.

Lemma 5.4. Let k be a perfect field. Then BCr2(k) is generated by Aut(P2) and the set of elements
f in the list below that exist over k.

(1) f sends the pencil of conics passing through two points of degree 2 in general position onto a
pencil of conics passing through two points of degree 2 in general position.
If k is finite, we can choose the two pencils to pass through the same points.

(2) f sends the pencil of conics passing through one point of degree 4 in general position onto a
pencil of conics passing through a point of degree 4 in general position.
If k is finite, we can choose the two pencils to pass through the same points.

(3) f is one of the following compositions, where Xd is a del Pezzo surface of degree d = (KXd
)2

and fab is a Sarkisov link of type II blowing up a point of degree a and its inverse blowing up
a point of degree b:

X6 X2 X1 X3

P2 P2 P2 P2 P2 P2 P2 P2f33 f77 f88 f66

(5.1)

or
X7 X8−d X7

P2 Q Q P2

p p′

f21 fdd f12

d ∈ {7, 6}

p′ = fdd(p)

(5.2)

or

X7 X3 X5−d X3 X7

P2 Q X5 X5 Q P2

p p′

f21 f52 fdd f−1
52 f12

d ∈ {3, 4}

p′ = f−1
52 fddf52(p)

(5.3)

or
X7 X3 X4

P2 Q X5 P2

p p′

f21 f52 f15
p′ = f52(p) (5.4)

or
X7 X3 X ′3 X ′7

P2 Q X5 Q′ P2

p p′

f21 f52 f25 f12

p′ = f25f52(p) (5.5)
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or
X7 X5 X ′5 X ′7

P2 Q X6 Q′ P2

p t p′ t′

f21 f31 f13 f12

p′ = f31(p)

t′ = f13(t)

(5.6)

or

X7 X5 X6−d X ′5 X ′7

P2 Q X6 X ′6 Q′ P2

p r fdd(r) p′

f21 f31 fdd f13 f12

d ∈ {2, 3, 4, 5}

p′ = f13fddf31(p)

(5.7)

or
X ′4 X5−d X ′4

P2 X5 X5 P2

p p′

f51 fdd f15

d ∈ {4, 3}

p′ = fdd(p)

(5.8)

Moreover, all links of the form fdd can be chosen to be involutions, except possibly f66 in
(5.1), f33 and f22 in (5.7).

Since the proof of Lemma 5.4 is quite long, we will check afterwards in Lemma 5.5 that the
generators (5.5) and (5.6), (5.7, d = 2) and (5.8, d = 4) are redundant.

Proof. First note that any element in (3) is contained in BCr2(k) as they only contract curves not
defined over the ground field k. The list of involutions is from [Isk96, Theorem 2.6]. For (1) and
(2), the claim over a finite field k follows from Lemma 5.1.

Let ψ ∈ BCr2(k). There is a decomposition into Sarkisov links ψ = φr · · ·φ1 as in Proposi-
tion 5.2. We do induction on r, the case r = 0 corresponding to ψ ∈ Aut(P2). Let r ≥ 1. Then φ1

is a link of type I or II, and its base-point is a base-point of ψ, so is of degree ≥ 2. By [Isk96, The-
orem 2.6(i,ii)], φ1 a link of type I with a base-point of degree 4 or a link of type II of the form
f88, f77, f66, f33, f21 or f51. We are going to look at these cases separately.

(a) If φ1 : P2 99K X is a link of type I, then it is the the blow-up of a point of degree d1 = 4;
X/P1 is a conic bundle whose fibres are the strict transforms of conics through the four points, and
K2
X = 5. Now φ2 is either a link of type II of conic bundles, a link of type III [Isk96, Theorem 2.6(i-

iv)], or an isomorphism. As φ2φ1 /∈ Aut(P2) by hypothesis (see Proposition 5.2 (1)), φ2 is a link of
type II of conic bundles or an isomorphism. Moreover, ψφ−1

1 = φr · · ·φ2 is well-defined on X(k),
so φ2 is well-defined on X(k) as well by Remark 5.3. Let r− 1 ≥ s ≥ 2 be the maximal index such
that φi is an isomorphism over P1 or a link of type II over P1 without a rational base-point for any
2 ≤ i ≤ s. The map φs · · ·φ1 is a birational map over P1 from X to a Mori fibre surface X ′/P1.
We now look at two cases

If φs+1 is a link of type III, then ν ′ := φs+1φs · · ·φ2φ1 is as in (2). Note that ψν−1 = φr · · ·φs+2

is as in Proposition 5.2.

If φs+1 is not a link of type III, then the map ν := φ−1
1 φs · · ·φ2φ1 ∈ BCr2(k) is as in (2) and

the map ψν−1 = φr · · ·φs+1φ1 is as in Proposition 5.2 since the base-point of φ1 is a base-point of
φr · · ·φs+1 by construction.

(b) Suppose that φ1 is a link of type II, i.e. one of the forms f33, f66, f77, f88, f21, or f51. In
the first four cases it is of the form (5.1) and we proceed by induction with ψφ−1

1 = φr · · ·φ2. If φ1

is of the form f21 (case (b1)) or f51 (case (b2)), then φ−1
1 has a rational base-point p, which is the
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unique base-point of ψφ−1
1 = φr · · ·φ2. Since φ2φ1 is not an automorphism by hypothesis, p is not

a base-point of φ2. Then φ2(p) is the unique rational base-point of ψφ−1
1 φ−1

2 = φr · · ·φ3. It may or
may not be a base-point of φ3.

(b1) Suppose that φ1 = f21 : P2 99K Q. Then φ2 is a link of type I (case (b1.1)) or II
[Isk96, Theorem 2.6]. If φ2 is a link of II, then it is of the form f77, f66, f44 (case (b1.2)) or f52

(case (b1.3)) or f31 (case (b1.4)) by [Isk96, Theorem 2.6(ii)]. The option φ2 = f12 does not occur
since it forces φ2φ1 ∈ Autk(P2), which is not allowed by hypothesis.

(b1.1) Suppose that φ2 : Q 99K X is a link of type I. Then it is the inverse of blowing-up a point
t of degree 2 [Isk96, Theorem 2.6(i)]. Then K2

X = 6 and X → P1 is a Mori fibre space whose fibres
are the images by φ2φ1 of conics in P2 passing through p and φ−1

1 (t). Now, φ3 is an isomorphism
or a link φ3 of type II or III. We will assume that φ3 is not an isomorphism, as otherwise we can
assume that φ4 is not an isomorphism and continue the argument below with φ4 instead of φ3.
Since φ3φ2 is not an automorphism by hypothesis, φ3 : X 99K X ′ is a link of type II over P1.

(b1.1.i) If φ3 has a rational base-point q, then q = φ2(p), where p is the base-point of φ−1
1 ,

as it is the unique rational base-point of φr · · ·φ3 by hypothesis, see (b). There exists a link
φ′2 : X ′ → Q′ of type III to a quadric surface Q′. Let q′ ∈ X ′ be the base-point of φ−1

3 . It is a
rational point, so there exists a link f12 : Q′ 99K P2 of type II with base-point φ′2(q′). The map
ν := f12φ

′
2φ3φ2φ1 ∈ BCr2(k) sends the pencil of conics through p, φ−1

1 (t) onto the pencil of conics
through the base-point of f−1

12 and the image by f12 of the base-point of φ−1
2 , hence belongs to the

family (1). The map ψν−1 = φr · · ·φ4φ
′
2f
−1
12 is a decomposition as in Proposition 5.2 and we can

proceed by induction.

(b1.1.ii) Suppose that φ3 has no rational base-point. Let 3 ≤ s ≤ r − 1 be the maximal index
such that φi is an isomorphism over P1 or a link of type II with no rational base-points for all
3 ≤ i ≤ s and consider the map φs · · ·φ3 : X 99K X ′. The map φs+1 is a link of type III or a
link of type II with a rational base-point. If φs+1 is a link of type II, we proceed as in (b1.1.i)
with φs+1φs · · ·φ3 instead of φ3. If φs+1 is a link of type III, then φs+1 is a contraction X ′ → Q′

to a quadric surface Q′. Recall from (b) that φ2(p) is the unique rational base-point of φr · · ·φ3,
where p is the base-point of φ−1

1 . There exists a link f12 : Q′ 99K P2 of type II with base-point
(φs+1φs · · ·φ3φ2)(p). The map ν := f12φs+1 · · ·φ1 sends the pencil of conics through p, φ−1

1 (t) onto
the pencil of conics through the base-point of f−1

12 and the image by f12 of the base-point of φ−1
s+1.

We proceed as in (b1.1.i).

(b1.2) If φ2 ∈ {f77, f66}, then φ2 is, up to an automorphism of Q, a birational involution of
Q [Isk96, Theorem 2.6(ii)]. Recall from (b) that φ−1

1 has a rational base-point p ∈ Q, which is the
unique rational base-point of φr · · ·φ2. There exists a link f12 : Q 99K P2 of type II with base-point
φ2(p). Then f12φ2φ1 ∈ BCr2(k) and is as in (5.2). Furthermore, ψ(f12φ2φ1)−1 = φr · · ·φ3f

−1
12 is

a decomposition as in Proposition 5.2 as the base-point of f−1
12 is a base-point of φr · · ·φ3f

−1
12 by

construction.

If φ2 = f44 : Q 99K Q′, let f12 : Q′ 99K P2 be the link of type II with φ2(p) as base-point and
q, q′ the base-point of φ2, φ

−1
2 , respectively. Then f12φ2φ1 sends the pencil of conics through φ−1

1 (q)
onto the pencil of conics through f12(q′), so it is a member of (2).

(b1.3) Suppose that φ2 = f52 : Q 99K X5, where X5 is a del Pezzo surface of degree 5. Then
φ3 is one of f33, f44, f15, f25 [Isk96, Theorem 2.6].

If φ3 ∈ {f33, f44}, then it is a birational self-map of X5 [Isk96, Theorem 2.6(ii)]. Let f12 : Q 99K
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P2 be a link of type II with base-point (φ−1
2 φ3φ2)(p), where p is the (rational) base-point of φ−1

1

according to (b). Then ν := f12φ
−1
2 φ3φ2φ1 is in the family (5.3) and ψν−1 = φr · · ·φ4φ2f

−1
12 is a

decomposition as in Propostion 5.2.

If φ3 = f15, then its base-point is q = φ2(p) by (b) and so φ3φ2φ1 is as in (5.4).

If φ3 = f25, then it is a map to a quadric surface Q′. Let f12 : Q′ 99K P2 be a link of type II
whose base-point is φ3φ2(p), where p is the (rational) base-point of φ−1

1 according to (b). Then
f12φ3φ2φ1 ∈ BCr2(k) is as in (5.5), and ψ(f12φ3φ2φ1)−1 = φr · · ·φ4f

−1
12 is a decomposition as in

Proposition 5.2.

(b1.4) If φ2 = f31 : Q 99K X6, then ψφ−1
1 φ−1

2 = φr · · ·φ3 has two rational base-points, namely
φ2(p) and the base-point t of φ−1

2 . Furthermore, φ3 is a link of type II of the form f55, f44, f33, f22

or f13 or a link of type III to a quadric surface [Isk96, Theorem 2.6]. The latter forces φ3φ2 to be
an automorphism, which contradicts our hypothesis, see Proposition 5.2(1).

Suppose that φ3 = f13 : X6 99K Q′ is a link to a quadric surface Q′. As ψφ−1
1 φ−1

2 = φr · · ·φ3 has
exactly two rational base-points, namely φ2(p) and t, and the base-point of q of φ3 is a base-point
of φr · · ·φ3 by hypothesis (see Proposition 5.2(2)), it follows that q = φ2(p) or q = t. The latter
forces φ3φ2 to be an automorphism, which contradicts our hypothesis (see Proposition 5.2(1)), so
q = φ2(p). Let f12 : Q′ 99K P2 be a link of type II with base-point φ3φ2(t). Then ν := f12φ3φ2φ1 is
of the form (5.6) and ψν−1 = φr · · ·φ4f

−1
12 is as in Proposition 5.2.

Suppose that φ3 : X6 99K X ′6 is one of f55, f44, f33, f22. There is a link f13 : X ′6 99K Q′ of
type II with base-point φ3(t), and f12 : Q′ 99K P2 a link of type II with base-point f13φ3φ2(p).
Then ν := f12f13φ3 · · ·φ1 is of the form (5.7) and ψν−1 = φr · · ·φ4f

−1
13 f

−1
12 is a decomposition as in

Proposition 5.2. By [Isk96, Theorem 2.6], f55 and f44 can be taken to be birational involutions.

(b2) Finally, suppose that φ1 = f51 : Q 99K X5. Then, as φ2 has no rational base-point by (b),
it is a link of type II and hence of the form f44, f33, f25 [Isk96, Theorem 2.6]. We proceed as in case
(b1.3) with φ2 instead of φ3 and construct a map as in (5.8) if φ2 = fdd, d = 3, 4, or the inverse of
a map of type (5.4) if φ2 = f25.

Lemma 5.5. In the list in Lemma 5.4, the generators (5.5) and (5.6), (5.7, d = 2) and (5.8,
d = 4) are redundant.

Proof. (5.5): Consider a map ψ := f12f25f52f21 as in (5.5) and denote by q5 (resp. q2) the base-
point of f52 (resp. f25) and q′2 (resp. q′5) the base-point of f−1

52 (resp. f−1
25 ). We complete the

blow-up diagram of ψ given in Lemma 5.4 (5.5) as follows:

X1

X6 X3 X ′3 X ′6

Q X5 Q′

q5

q′2
q2

q′5

q′2

q5 q2 q′2 q′5
q2f52 f25

Thus ψ sends the pencil of conics through the base-point of f21 and f−1
21 (q′2) onto the pencil of

conics through the base-point of f−1
12 and f12(q2), and is hence in the family (1).

(5.6): Consider a map ψ := f12f13f31f21 as in (5.6) and denote by q2, q3, q
′
3, q
′
2 the base-point

of f21, f31, f
−1
13 , f

−1
12 respectively. We complete the blow-up diagram of ψ given in Lemma 5.4 (5.6)
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as follows:
X4

X7 X5 X ′5 X ′7

P2 Q X6 Q′ P2

q3

p′ t

q′3

q2 p q3 t p′ q′3 t′ q′2

f21 f31 f13 f12

where p′ = f31(p) and t′ = f13(t). Let r1, r2 (resp. s1, s2, s3) be the geometric components of q2

(resp. f−1
21 (q3)). On X4, there are exactly sixteen (−1)-curves over the algebraic closure k of k:

• The exceptional divisor of r1, r2; they make up an orbit of length 2.

• The exceptional divisor of s1, s2, s3; they make up an orbit of length 3.

• The strict transform of the conic through r1, r2, s1, s2, s3, which is rational.

• The strict transform of the line through r1, r2, which is rational.

• The strict transform of the line through si, sj , i 6= j; they make up an orbit of length 3.

• The strict transform of the line through ri, sj ; they make up an orbit of length 6 whose
members are not disjoint.

It follows that the blow-up of q2, q
′
2 is redundant and ψ = f33.

(5.7, d = 2): Consider a map ψ := f12f13f22f31f21 as in (5.7) and denote by q3, q2, q
′
2, q
′
3 the

base-points of f31, f22, f
−1
22 , f

−1
13 respectively. We complete the blow-up of ψ given in Lemma 5.4 (5.7)

as follows:

X6 X3 X ′6

X7 X5 X4 X ′5 X ′7

P2 Q X6 X ′6 Q′ P2

q2

q3

q2
t

q′2

q′3

q′2

p q3

t q2 q′2 t′ q′3

p′

f21 f31 f22 f13 f12

where p′ = (f13f22f31)(p) and t′ = f22(t). Thus ψ belongs to the family (1).
(5.8, d = 4): Consider a map ψ := f15f44f51 as in (5.8). Let q4, q

′
4, q5, q

′
5 be the base-point of

f44, f
−1
44 , f51, f15, respectively. We complete the blow-up of ψ given in Lemma 5.4 (5.8) as follows,

where Y is the blow-up of X1 at the point p, and is not a del Pezzo surface:

Y

X ′5 X4 X1 X ′4 X ′′5

P2 X5 X5 P2

q5
q4

p
q′4

q′5

q4

q5 p q4 q′4 p′ q′5

q′4f51 f44 f15

where p′ = fdd(p). With Lemma 5.1, we obtain that ψ is in the family (2).

Proof of Theorem 1.4. We compare the list of generators in [Isk91] contained in BCr2(k) with the
list of generators in Lemma 5.4, and see that the two lists coincide, if we replace “preserving the
pencil of conics through a point of degree 4 (resp. two points of degree 2)” by “sending the pencil
of conics trough a point of degree 4 (resp. two points of degree 2) onto a pencil of conics of the
same kind” in [Isk91]:
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Lemma 5.4 (1) (2) (5.1) (5.2) (5.3)

[Isk91] A11 (15),(20) (7),(8),(19’),(15”’) (10),(11) (12),(13)

Lemma 5.4 (5.4) (5.5) (5.6) (5.7) (5.8)

[Isk91] A17 (14) (19’) (16),(17),(11”),(18) (21),(22)

while type (9), (9’), (11’), (15’), (15”), (19) from [Isk91] are not contained in BCr2(k). Note that
(5.6) is covered by (19’) by Lemma 5.5.

5.2 Revisiting the parity problem

Now let us prove that all generators given in Lemma 5.4 induce even permutations when the ground
field is k = F2m for m ≥ 2.

5.2.1 Parities of f33, f77, and f88 in (5.1) Up to automorphisms of P2, the maps f77 and f88

are Geiser and Bertini involutions respectively given by equations (4.4) and (4.5). By Theorem 4.5,
they induce even permutations on P2(Fq) for q = 2m ≥ 4. On the other hand, the map f33 is a
quadratic transformation, that is, a Cremona map defined by the linear system of conics passing
through three non-collinear points in P2.

Lemma 5.6. Let k be any field, f ∈ BCr2(k) be a quadratic transformation and τ ∈ Cr2(k) be the
standard quadratic involution [x : y : z] 7→ [yz : xz : xy].

(1) There exists g ∈ PGL3(k) such that the composition gf is involutive.

(2) If f is involutive, then there exists h ∈ PGL3(k) such that τ = h−1fh.

Proof. There exists an extension k′/k of degree 3 and a generator σ ∈ Gal(k′/k) ∼= Z/3Z such that

Bs(f) = {a, aσ, aσ2} for some a ∈ P2(k′).

Since f is given by blowing up {a, aσ, aσ2} and then contracting the three lines passing through
these points, the indeterminacy locus of f−1 is a Galois orbit for the same extension k′/k, namely,

Bs(f−1) = {b, bσ, bσ2} for some b ∈ P2(k′).

For every point x = [x0, x1, x2] ∈ P2, we define

gx :=

x0 xσ0 xσ
2

0

x1 xσ1 xσ
2

1

x2 xσ2 xσ
2

2


to be a linear map that sends the coordinate points [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1] to the Galois
orbit points x, xσ, xσ

2
, respectively. Note that gx is invertible when x, xσ, xσ

2
are not collinear.

Let g := gag
−1
b , which can be easily verified to be defined over k. Then gf is involutive as the

indeterminacy loci of this map and its inverse both coincide with {a, aσ, aσ2}. This proves (1).
Assume that f is involutive, or equivalently, that Bs(f) = {a, aσ, aσ2} = Bs(f−1). Let h = ga.

Then the indeterminacy loci of h−1fh and its inverse both consist of the three coordinate points.
This implies that τ = h−1fh and thus proves (2).
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Recall that, for every n ≥ 1, the standard involution τ : Pn 99K Pn is defined by

τ([x0 : · · · : xn]) = [τ0 : · · · : τn] where τi =
∏
j 6=i

xj .

In terms of the affine coordinates (ξ1, . . . , ξn) where ξi = xi/x0, this map is written as

τ(ξ1, . . . , ξn) = (ξ−1
1 , . . . , ξ−1

n ).

From this expression, one can deduce that the fixed locus of τ consists of points of the form
[±1 : · · · : ±1]. Note that these are the same point in characteristic 2. In the following, we
prove a general fact about bijective Cremona transformations of Pn that are conjugate to τ by
automorphisms, then use it to compute the parity induced by f33.

Lemma 5.7. Let n ≥ 1, k = F2m, and f ∈ BCrn(k) be an involutive quadratic transformation. If
there exists h ∈ PGLn+1(k) such that h−1fh equals the standard involution τ , then the permutation
induced by f on Pn(k) is odd when m = 1 and even when m ≥ 2.

Proof. The relation τ = h−1fh implies that a point x ∈ Pn(k) is fixed by τ if and only if h(x) is
fixed by f . Because the fixed locus of τ consists of a single point [1 : · · · : 1], the fixed locus of f
consists of a single point y ∈ Pn(k) as well. If y /∈ Pn(k), then f acts on Pn(k) as an involution
without a fixed point. This implies that the number of rational points

|Pn(k)| = |Pn(F2m)| = (2m)n + · · ·+ 2m + 1

is even, contradiction. Hence y ∈ Pn(k), and the action of f on Pn(k) is a composition of

1

2
(|Pn(k)| − 1) =

1

2
((2m)n + · · ·+ 2m)

many transpositions. The last integer is odd if m = 1 and even if m ≥ 2, so the result follows.

Proposition 5.8. Let k = F2m with m ≥ 2. Assume that f ∈ BCr2(k) is of type f33. Then f acts
on P2(k) as an even permutation.

Proof. By Lemma 5.6, there exists g ∈ PGL3(k) and h ∈ PGL3(k) such that h−1gfh is the standard
quadratic involution. It follows from Lemma 5.7 that gf acts on P2(k) as an even permutation.
Since g acts on P2(k) evenly by Proposition 3.5, the result follows.

5.2.2 Parities of the generators (5.2) to (5.8) Any birational map f ∈ BCr2(k) which

over k is a Geiser involution (resp. Bertini involution) up to an element of PGL3(k) lifts to an
automorphism of a del Pezzo surface of degree 2 (resp. degree 1). In fact, the geometric description
of f is analogous to the one of the Geiser involution (resp. Bertini involution) over k and to the
Geiser involution (resp. Bertini involution) over k with only one base-point. It yields directly that
f lifts to an automorphism of a del Pezzo surface of degree 2 (resp. degree 1). Hence, f induces
an even permutation by Theorem 4.5.

Generator (5.2), (5.3), or (5.7, d = 4, 5): Let f be the corresponding birational map. Note that
we can take fdd in the respective generator to be an involution, so that geometrically fdd is either a
Geiser or Bertini involution, which induces an even permutation. Upon applying an automorphism
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of P2 or Q, we can assume that f is conjugate to fdd. Hence, f also induces an even permutation
by Theorem 1.2.

Generator (5.4): Let q2 be a point of degree 2 and q5 a point of degree 5, both in general
positions. Over k there are exactly two cubic curves passing through q5, q2 with a double point at
one of the points of q2, and we call C2 its orbit over k. Similarly, there are exactly five cubic curves
with a double point at one of the points of q5, and we call C5 its orbit over k. We complete the
blow-up diagram of f = f15f52f21. By abuse of notation we write p for f21(L), f52(p) and their
image in X3. In X3 there are exactly two curves which over k are orbits of disjoint (−1)-curves of
length 2 and 5, namely the strict transforms of C2 and C5, denoted by C̃2 and C̃5.

X2

X7 X3 X4

P2 Q X5 P2

q5 p
C̃2

q2 p q5 C̃2 p C̃5

f21 f52 f15

The blow-up diagram of f shows that f has the same geometric description as a Geiser involution
over k with base-points q2 and q5. Thus, up to composition by an element of PGL3(k), f lifts to
an automorphism of the del Pezzo surface X2. Now Theorem 4.5 and Proposition 3.5 imply that f
induces en even permutation over k = Fq, q = 2m ≥ 4.

Generator (5.5) By Lemma 5.5, this map is, up to an automorphism of P2, a member of the
family (1) and hence induces an even permutation for k = F2m , m ≥ 2 by Corollary 4.3.

Generator (5.6) By Lemma 5.5, this generator is equal to f33, so is treated in Proposition 5.8.
Generator (5.7, d = 3) We can complete the blow-up diagram as in Lemma 5.5 to get

X ′′5 X2 X ′′′5

X7 X5 X3 X ′5 X ′7

P2 Q X6 X ′6 Q′ P2

p3

q3

p3
t

p′3

q′3

p′3

p q3

t p3 p′3 t′ q′3

p′

f21 f31 f33 f13 f12

where q3, p3, q
′
3, p
′
3 are the base-points of f31, f33, f13, f

−1
33 respectively. Hence, the composition

f13f33f31 is geometrically a Geiser involution. Hence the permutation induced on Q 99K Q is even.
Since f = f12f13f33f31f21 is conjugate to f13f33f31 (upon applying automorphism of P2), f also
induces an even permutation by Theorem 1.2.

Generator (5.8) The case d = 4 follows from Lemma 5.5. If d = 3, we have the blow-up diagram,

X1

X4 X2 X ′4

P2 X5 X5 P2

q3
p

q′3
q5 p q3 q′3 p′ q′5

f51 f33 f15

where q3, q
′
3, q5, q

′
5 are the base-points of f33, f

−1
33 , f51, f15 respectively. Hence, f = f15f33f51 is a

Bertini involution, so f induces an even permutation.
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5.2.3 Parity of the generator f66 in (5.1) We finally prove that the remaining generator,
namely f66 : P2 99K P2, induces a permutation of even parity on P2(F2m) for m ≥ 2.

Lemma 5.9 ([LS21, Lemma 4.20]). Let p1, . . . , p6 be a point of degree 6 in P2 over Fq such that
p1, . . . , p6 are in general position. Then at least q2 + q rational points of P2 are in general position
with p1, . . . , p6.

Proof. Let σ be the generator of Gal(Fq6/Fq) and suppose that σi(p1) = pi for i = 1, . . . , 6. Let
Lij be the line through pi, pj , and let r be a rational point of P2 that is not on the intersection of
L14, L25, L36. The lines through the p1, ..., p6 make up three orbits, namely the orbit of L12, L13

and L14. We check that r is not contained in one of these three lines, from which it follows that
r is not on any of the Lij . If r ∈ L12, then L23 = σ(L12) contains r, p2, so L23 = L12, which is
impossible. If r ∈ L13, then r, p3 are both contained in σ2(L13) = L35, which is again impossible. If
r ∈ L14, then r is also contained in σ(L14) = L25 and σ2(L14) = L36, which contradicts our choice
of r. Finally, if p1, .., p5, r lie on a conic C, then σ(C) and C contain 5 common points and hence
are equal, which is impossible.

Lemma 5.10. Suppose p1, . . . , p6 make up a point of degree 6 in P2 over Fq such that no three are
collinear and let L be the line through p1 and p2. Under the action of Gal(Fq6/Fq), there is at most
one point r ∈ L whose orbit in P2 is of length 2. In this case, r and its Galois conjugate form the
only point of degree 2 contained in the orbit of L.

Proof. Consider i as an integer modulo 6 and let

• σ to be the generator of Gal(Fq6/Fq) such that σi(p1) = pi+1, and

• Lpipi+1 to be the line through pi and pi+1 so that L = Lp1p2 .

Suppose that there exists r ∈ Lp1p2 such that {r, σ(r)} form a point of degree 2 in P2. Then

r ∈ Lp1p2 ∩ Lp3p4 ∩ Lp5p6 and σ(r) ∈ Lp2p3 ∩ Lp4p5 ∩ Lp6,p1 .

In particular, {r, σ(r)} is contained in the orbit of Lp1p2 . If Lp1p2 contains another point s whose
orbit is of length 2. Then Lp1p2∩Lp3p4 contains both r and s, thus Lp1p2 = Lp3p4 , which contradicts
the hypothesis that no three of the pi’s are collinear.

Lemma 5.11. Let C ⊂ P2 be a singular cubic over an arbitrary field k. Then C is rational, that
is, its normalization C̃ is isomorphic to P1 over k.

Proof. By Châtelet’s theorem, C̃ ∼= P1 over k if and only if C̃ contains a k-point. This is always
the case when C is a cuspidal cubic. Suppose that C is a nodal cubic and let p ∈ C be the node.
The linear system of lines passing through p is isomorphic to P1 over k. Note that |P1(k)| ≥ 3 for
any field k. Since the tangent cone at p contributes at most two elements to P1(k), there exists a
line ` ∈ P1(k) such that ` ∩ C = {p, p′} for some k-point p′ 6= p. The point p′ induces a k-point on
the normalization C̃, so the proof is done.

Lemma 5.12. Let q = 2m ≥ 2 and suppose p1, . . . , p6 make up a point of degree 6 in P2 over Fq
contained in a singular cubic C. Then there are at least 1

2(q2− 2q− 2) points of degree 2 on C that
are not on a conic with p1, p2, p4, p5.
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Proof. There is an involution σ on C which maps a general x ∈ C(Fq) to the residual intersection of

the conic passing through p1, p2, p4, p5, x with C. Let z ∈ C be the singular point and τ : C̃ → C be
the normalization. Then σ lifts to an involution σ̃ on C̃ which preserves the set τ−1(z) ⊂ C̃. Notice
that C̃ ∼= P1 by Lemma 5.11. Then an elementary computation shows that σ̃, up to conjugation
over Fq6 , acts on C̃ as x 7→ x+ a for some a ∈ Fq6 .

If C is a nodal cubic, the total number of points of degree 2 on C is given by

1

2
|C(Fq2) \ C(Fq)| =

{
1
2(q2 − q) if τ−1(z) consists of two Fq-points,
1
2(q2 − q − 2) if τ−1(z) is a point of degree 2 over Fq.

If C is a cuspidal cubic, the total number of points of degree 2 on C is given by

1

2
|C(Fq2) \ C(Fq)| =

1

2
(q2 − q).

Pick any x ∈ C(Fq2) \ C(Fq). Then x and its conjugate xq lie on a conic with p1, p2, p4, p5 if and
only if xq = x+a. The last equation has at most q distinct solutions in x, so the number of degree-2
points on C lying on a conic with p1, p2, p4, p5 is at most 1

2q. As a consequence, at least

1

2
(q2 − q − 2)− 1

2
q =

1

2
(q2 − 2q − 2)

many points of degree 2 on C do not lie on a conic with p1, p2, p4, p5.

Lemma 5.13. Let q = 2m ≥ 4. Let p be a point of degree 6 in P2 over Fq such that its blow-up is
a del Pezzo surface. Then there exists at least one point r of degree 2 in P2 such that the blow-up
at p, r is still a del Pezzo surface (i.e. p, r are in general position).

Proof. Choose a generator σ for Gal(Fq6/Fq) and let p1, . . . , p6 be the orbit making up p such that
σ(pi) = pi+1 for each i modulo 6. In the following, we prove that there exists a point r = {r1, r2}
of degree 2 in P2 such that

• no three of the eight points p1, . . . , p6, r1, r2 are on a line,

• no six of them are on a conic, and

• no eight of them are on a nodal cubic with one being the double point.

Let r = {r1, r2} be a point of degree 2 in P2 such that r1 (resp. r2) is not collinear with any
two consecutive pi’s. Let Lij be the line through pi, pj . The lines through the p1, ..., p6 make up
three orbits, namely the orbit of L12, L13 and L14. By Lemma 5.10 there is at most one point of
degree 2 in the orbit of L12, and we choose r to be outside of the orbit of L12. Note that the line
through r is rational, so it cannot contain any pi. Suppose that r1 ∈ L13. Then r1 ∈ σ2(L13) = L35

and thus σ2(L13)∩L13 contains p3, r1. This implies σ(L13) = L13, which is against our hypothesis.
Suppose that r1 ∈ L14. Then r2 ∈ σ3(L14) = L14 and hence L14 = σ3(L14) is the line through r,
which is impossible as we have already explained.

Suppose that p1, . . . , p4, r1, r2 are on a conic C. Then σ(C) ∩C contains p2, p3, p4, r1, r2, hence
C = σ(C), that is, C is invariant under Gal(Fq6/Fq). This implies that C contains p, which is
against our hypothesis. Suppose that p1, . . . , p5, r1 are on a conic C. Then σ2(C) passes through
p3, p4, p5, p6, p1, r1. We have C ∩ σ2(C) contains p1, p3, p4, p5, r1 and hence σ2(C) = C, which is
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impossible as C does not contain p6. To finish the conic case, recall from Lemma 5.9 that there is
a rational point s in P2 such that s, p1, . . . , p6 are in general position. There exists a singular cubic
containing p1, . . . , p6 with s its singular point. By Lemma 5.12, there are at least 1

2(q2−2q−2) ≥ 3
points of degree 2 not on a conic with p1, p2, p4, p5. We can choose r1, r2 to be one of them.

Finally, if there is a nodal cubic C through the eight points p1, . . . , p6, r1, r2 with one of them
its double point, then σ(C) 6= C and C · σ(C) ≥ 10, which is impossible.

Remark 5.14. Let p, r be points in P2 of degree 6 and 2 such that their blow-up is a del Pezzo
surface. On can describe the Bertini involution on this surface in a very nice way: Let S be the
blow-up of p and view it as cubic surface in P3. We now can view r as a point of P3, and denote by
L ⊂ P3 the line passing through r. We claim that L is not a (−1)-curve on S. Indeed, the 27 lines
on S are the six exceptional divisors of the components p1, . . . , p6 of p, the 15 strict transforms of
the lines through two of the pi, and the 6 strict transforms of the conics passing through five of the
pi. None of these curves is defined over Fq, while L is defined over Fq. So, the line L intersects S
transversely in r and a rational point s. The planes in P3 containing L induces an elliptic fibration
on S, or more precisely, on the blow-up of S at r, s, where the exceptional curve of r defines a zero
section. In particular, the Bertini involution can be defined as it is the multiplication by −1 using
the group law on the generic fiber.

Proposition 5.15 ([LS21, Lemma 4.12 (2)]). Assume that m ≥ 2 and q = 2m ≥ 4. Then any link
f66 : P2 99K P2 induces an even permutation on P2(Fq).

Proof. Let p be the base-point of degree 6 of f66. By Lemma 5.13, there exists a point r of degree 2
such that the blow-up at r, p is a del Pezzo surface T . Denote respectively by E1, E2 and E′1, . . . , E

′
6

the geometric components of their exceptional divisors. Let L be the pullback of the class of a line
in P2. Then the only orbits of (−1)-curves in T of length at most 8 with pairwise disjoint members
are as follows:

E := {E1, E2} ,
E′ :=

{
E′1, . . . , E

′
6

}
,

` := {L− E1 − E2} ,

C :=

{
2L−

∑
j∈{1,...,6}\{i}

E′j

∣∣∣∣ i = 1, . . . , 6

}
,

F :=

{
4L− 2E1 − 2E2 − 2E′i −

∑
j∈{1,...,6}\{i}

E′j

∣∣∣∣ i = 1, . . . , 6

}
,

D :=
{

5L− E1 − E2 − 2
(∑6

j=1
E′j

)}
,

S :=
{

6L− 3Ei − 2E3−i − 2
(∑6

j=1
E′j

) ∣∣∣ i = 1, 2
}
,

S′ :=

{
6L− 2E1 − 2E2 − 3E′i − 2

(∑
j∈{1,...,6}\{i}

E′j

) ∣∣∣∣ i = 1, . . . , 6

}
.

Drawing all possible blow-downs from T over Fq, we obtain the following commutative diagram,
where the arrows are denoted by the set of (−1)-curves they contract.
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P2 P2

Q Y3 Y ′3 Y ′′3 Q

Y2 T Y ′2

Q Y1 Y ′1 Y ′′1 Q

P2 P2

τ2

D

S
S′ F S

`

C

S′ D

S′
S

F

`

E′
E

C

F

E′

D
E

C E′
E

`

g

f66

τ1

The Bertini involution β ∈ Aut(T ) acts on the set {E,E′, `, C, F,D, S, S′}, and it does not
preserve any of them. It is thus a rotation of order 2, and it exchanges the rational curves `,D.
So, β is the birational map corresponding to the path of arrows from the lower left P2 to the upper
right P2, that is,

β = ε ◦ τ−1
2 ◦ g ◦ τ1 ◦ f66 for some ε ∈ PGL3(Fq).

By Proposition 3.5, ε induces even parity on P2(Fq). By Theorem 4.5, the automorphism β induces
an even permutation on T (Fq), and by Theorem 1.2, it induces an even permutation on P2(Fq).
The map τ−1

2 ◦ g ◦ τ1 is a generator of BCr2(Fq) of the form (5.2), and we showed in Section 5.2.2
that it induces an even permutation on P2(Fq). As a consequence, f66 induces an even permutation
on P2(Fq).

The Bertini involution acting on the commutative diagram in the above proof is a tool used in
[LS21] to show that the Cremona group of rank 2 over an arbitrary perfect field is generated by
involutions, where it is called central symmetry [LS21, Corollary 4.4].

Proof of Theorem 1.1. By Corollary 4.3, the results proved in §5.2.1 and §5.2.2, and Proposi-
tion 5.15, it follows that all generators of BCr(Fq) induce even permutations on P2(Fq).

6 Basic properties on the bijective Cremona group

In this section, we prove that the group BCr2(k) is not finitely generated in most situations and is
of infinite index as a subgroup of Cr2(k). We also show that BCr2(k) is not a normal subgroup of
Cr2(k), and discuss whether the kernel of the homomorphism BCrn(k)→ Sym(Pn(k)) is a normal
subgroup of Crn(k) or not.

6.1 Non-finite generation

The Cremona group Cr2(k) itself is not finitely-generated over any field k. (See [Can12, Proposi-
tion 3.3] and [Can18, Proposition 3.6].) Here we prove that the same property holds for BCr2(k)
under the situations described below.

Proposition 6.1. Let k be a field and let ks be a separable closure. The group BCr2(k) is not
finitely generated provided that

(1) the field k is uncountable,
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(2) the degree [ks : k] is finite, or

(3) the degree [ks : k] is infinite and k admits a separable quadratic extension T/k.

We will prove the three statements in Proposition 6.1 separately. The proofs for (1) and (2)
will come first as they are relatively shorter comparing to (3).

Proof of Proposition 6.1 (1). If k is uncountable, then PGL3(k) ⊂ BCr2(k) is uncountable, thus
BCr2(k) cannot be a finitely generated group. (This proof was pointed out to us by Zinovy Reich-
stein.)

Proof of Proposition 6.1 (2). Let k0 be the prime field of k, which is either Q or Fp depending on
the characteristic. For each f ∈ BCr2(k), let Bs(f) ⊂ P2 denote the base scheme of f , and let kf/k0

be the minimal field extension over which every geometric point of Bs(f) and Bs(f−1) (including
the infinitely near ones) is defined. Note that f is defined over kf by definition, and kf may not
contain k in general.

Assume that BCr2(k) is generated by a finite subset Γ and let kΓ be the composite of kf for
all f ∈ Γ. Since every g ∈ BCr2(k) is a composition of elements of Γ, we have kg ⊂ kΓ. For every
a ∈ k, the map g : [x : y : z] 7→ [x + ay : y : z] belongs to PGL3(k), and thus BCr2(k). Hence
kg = k0(a) ⊂ kΓ. This implies k ⊂ kΓ as a ∈ k is arbitrary. Now we obtain a tower of field
extensions

k0 ⊂ k ⊂ kΓ

where kΓ is finitely-generated over k0 and [kΓ : k] is finite. By the Artin–Tate lemma [AT51, Theo-
rem 1], k is finitely-generated over k0. Hence [k : k0] is finite. (See, e.g., [AM69, Proposition 7.9].)
As [ks : k] is finite by hypothesis, we conclude that [ks : k0] is finite, contradiction.

When ks/k is an infinite extension, our strategy is to construct a sequence of elements in
BCr2(k) whose indeterminacy loci contain points of arbitrarily large degrees. The construction
requires careful selections of the candidates for the indeterminacy points in P2. Let us start with
a few lemmas that help us deal with the positioning problem.

Lemma 6.2. Suppose that k is a field with [ks : k] = ∞ and let T/k be a separable quadratic
extension. Then there exists four points {a1, a2, b1, b2} in P2(T ) such that {a1, a2} and {b1, b2}
form Gal(T/k)-orbits, and no three of them are collinear.

Proof. Since T/k is separable, there exists a point in P2 of degree 2 that is reduced: we may take
a1 = [a : 1 : 0] and a2 = [a′ : 1 : 0], where a, a′ ∈ T \ k are the distinct roots of an irreducible
quadratic polynomial over k. Take β ⊂ P2 to be any k-line not spanned by a1 and a2. Since β ∼= P1

over k, we can find a pair of Galois-conjugate points {b1, b2} on β in a similar way as before. Then
{a1, a2} and {b1, b2} satisfy the requirements.

As a consequence of Lemma 6.2, there exists a unique conic Cx through {a1, a2, b1, b2, x} for
every x ∈ P2 \{a1, a2, b1, b2}, which degenerates if and only if x lies on the line spanned by any two
of the four points [BKT08, Theorem 1]. All but three of these conics are smooth, and the three
degenerate ones are

C0 = span(a1, a2) ∪ span(b1, b2),

C1 = span(a1, b1) ∪ span(a2, b2),

C2 = span(a1, b2) ∪ span(a2, b1).

(6.1)
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Note that these curves are defined over k.

Lemma 6.3. Retain the notation from Lemma 6.2. Let `1 ⊂ P2 be a line over T passing through a1,
but not a2, b1, b2, and let `2 be its Gal(T/k)-conjugate. Let K0/k be a non-trivial Galois extension
different from T and let K = K0T be the composite field. Then there exists a closed point x ∈ `1
defined over K/k but not over any proper subfield, such that

(1) Let r = [K : T ]. Then r of the Gal(K/k)-conjugates of x lie on `1 (resp. `2).

(2) Let x = x1, ..., x2r be the Gal(K/k)-conjugates of x. For each 1 ≤ i ≤ 2r, the unique conic
passing through {a1, a2, b1, b2, xi} is smooth.

(3) If xi, xj are any two distinct conjugates of x, the six points a1, a2, b1, b2, xi, xj do not lie on
a conic.

Proof. Consider the P1 that parametrizes the conics passing through a1, a2, b1, b2. By the primitive
element theorem, K = k(z) for some z ∈ K, which can be seen as a K-point z ∈ P1(K) = K∪{pt}.
Let {z = z1, ..., z2r} be the Galois orbit of z in the base P1, and let F1, ..., F2r be the conics in P2

corresponding to these orbit points. Here we index the points in a way that the action of Gal(K/T )
preserves the parities of the indices. In particular, the conic Fi with odd i (resp. even i) intersects
`1 (resp. `2) at a1 (resp. at a2), and it cannot be tangent to `1 (resp. to `2) since otherwise it
would be defined over T .

Let xi be the residual intersection of Fi with `1 (resp. with `2) for odd i (resp. for even i)
and let x = x1. By construction, these points are all distinct, form an orbit under the action of
Gal(K/k), and equally distribute on l1 and l2, which proves (1). Property (2) holds since each
Fi is defined over K but not over any proper subfield, while the three degenerate conics C0, C1,
C2 are defined over k. Finally, if the set {a1, a2, b1, b2, xi, xj} where i 6= j lies on a conic C, then
C = Fi = Fj , which contradicts the construction. This proves (3).

Lemma 6.4. Retain the notation from Lemma 6.3. Then there exists f ∈ BCr2(k) whose indeter-
minacy locus contains a point of degree [K : k] over k.

Proof. The construction is accomplished via the following steps:

(1) Pick four points a1, a2, b1, b2 ∈ P2 as in Lemma 6.2. blow-up P2 along {a1, a2, b1, b2} to obtain
a conic bundle C → P1 fibered in the conics passing through {a1, a2, b1, b2}. Recall that only
three of the fibers are degenerate, namely, C0, C1, C2 defined in (6.1). The exceptional divisors
A1, A2, B1, B2 over a1, a2, b1, b2, respectively, form four sections of the bundle. Moreover, the
Gal(K/k)-action exchanges the irreducible components of the two singular fibres C1 and C2.

(2) Let x be the point obtained in Lemma 6.3 and consider it as a point on C. blow-up C along
the Gal(K/k)-orbit of x to obtain a map X → C. The strict transform of the fibers of
C → P1 containing x is a Gal(K/k)-orbit of (−1)-curves F1, . . . , F2r by Lemma 6.3(2). Using
Castelnuovo’s contractibility criterion in positive characteristics [Băd01, Theorem 3.30], blow
down F1, ..., F2r to get X → C′, and C′ is a conic fibration over P1. The induced birational
map φ : C 99K C′ preserves the conic fibrations.

(3) The birational map φ is regular around the singular fibers of C → P1, so φ(C0), φ(C1), φ(C2)
are the singular fibres of C′ and the Gal(K/k)-action exchanges the irreducible components of
φ(C1) and φ(C2). Hence K2

C′ = 5. Sine C′ has a k-point, it follows from [Sch20, Lemma 6.5]
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that there is a birational morphism C′ → P2 contracting a Gal(K/k)-orbit O of four points.
Since C′ → P1 has three singular fibres, one of which has Gal(K/k)-invariant components, it
follows that O is the union of two Gal(K/k)-orbits {a′1, a′2} and {b′1, b′2}.

The desired Cremona map f is then obtained from the composition

X
contracting Ei’s

��

contracting Fi’s

  

C
��

φ
// C′

!!

P2 f
// P2.

(6.2)

The map f belongs to Cr2(k) since it is composed from maps defined over k. As for the indetermi-
nacy loci, we have

Bs(f) = {a1, a2, b1, b2, x1, . . . , x2r}, Bs(f−1) = {a′1, a′2, b′1, b′2, y1, . . . , y2r}

where y1, . . . , y2r are the images of F1, ..., F2r in the final P2. This shows that f ∈ BCr2(k), and
Bs(f) contains the Gal(K/k)-orbit {x1, ..., x2r} of size 2r = [K : k].

Proof of Proposition 6.1 (3). Let k′f/k be the be the minimal field extension over which every

geometric point of Bs(f) and Bs(f−1) (including the infinitely near ones) is defined. If BCr2(k)
is finitely-generated by f1, f2, ..., fr, then for each f ∈ BCr2(k), k′f would be contained in the
composite of k′f1 , ..., k

′
fr

, and so

[k′f : k] ≤
r∏
i=1

[k′fi : k],

which implies that the set of integers {[k′f : k] : f ∈ BCr2(k)} is bounded. The assumption
[ks : k] =∞ guarantees that k admits a Galois extension K0/k such that K = K0T has arbitrarily
large degree d over k. By Lemma 6.4, there exists h ∈ BCr2(k) whose indeterminacy locus contains
a point of degree d over k and hence d ≤ [k′h : k], contradiction.

6.2 The infinite index

The construction of the Cremona maps in Lemma 6.4 can be used to show that BCr2(k) is of
infinite index as a subgroup of Cr2(k). Before proving this statement, let us remark that the
transformation between conic bundles C 99K C′ in the proof of Lemma 6.4 is a Sarkisov link of
type II. The discovery of the induced Cremona maps can date back to 1877 by Ruffini, whose
homaloidal type, as computed in the following lemma, is documented in [Hud24, page 234].

Lemma 6.5. Consider the Cremona map (6.2). Let M ∈ Pic(X) be the pullback of a line class
from the right P2. Then

M = (2n+ 1)L− 2
n∑
i=1

Ei − n(A1 +A2 +B1 +B2)

where n = 2r is the cardinality of the large Galois orbit.
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Proof. The fiber class F corresponds to a conic in the right P2 passing through a′1, a
′
2, b
′
1, b
′
2, so the

class in Pic(X) corresponding to a conic from the right P2 equals

2M = F +A′1 +A′2 +B′1 +B′2 = F +A1 +A2 +B1 +B2 + 2nF − 4
n∑
i=1

Ei

= (2n+ 1)(2L−A1 −A2 −B1 −B2)− 4
n∑
i=1

Ei

= (4n+ 2)L− 2n(A1 +A2 +B1 +B2)− 4

n∑
i=1

Ei.

Divide both sides by 2 to get the result.

Proposition 6.6. Let k be any field. Then BCr2(k) ⊂ Cr2(k) is a subgroup of infinite index.

Proof. First assume that k is infinite. Let us construct inductively an infinite sequence of maps
f1, f2, f3, ... in Cr2(k) as follows: Let f1 be the identity map. Suppose that fi is constructed and
let U ⊂ P2 be the open subset such that fi|U is an isomorphism. As k is infinite, we can take three
non-collinear points {a, b, c} ⊂ U(k). Define fi+1 := τ ◦ fi where τ is the quadratic transformation
with Bs(τ) = {fi(a), fi(b), fi(c)}. Then we have

|Bs(fi+1)(k)| ≥ |Bs(fi)|+ 3.

Note that the left cosets f1BCr2(k), f2BCr2(k), . . . are all pairwise disjoint because the elements
in BCr2(k) cannot increase the indeterminacy points of fi in P2(k).

Now assume that k = Fq is a finite field. The same idea as in the proof of Lemma 6.2 produces
four points a1, a2, b1, b2 ∈ P2(Fq) such that no three are collinear. The main construction of the
Cremona map carried out in Lemma 6.4 still works, and for each even integer n = 2r, we get
a map fr ∈ Cr2(Fq) such that Bs(fr) supports at a1, a2, b1, b2 with multiplicity 2r (Lemma 6.5).
We obtain an infinite sequence {f1, f2, f3, . . .} of elements in Cr2(Fq) such that the left cosets
f1BCr2(Fq), f2BCr2(Fq), . . . are all pairwise disjoint. Indeed, for any g ∈ BCr2(k) the multiplicity
of frg at a1, a2, b1, b2 is equal to 2r.

6.3 On the non-normality

Over an algebraically closed field k, Blanc [Bla10, Theorem 4.2] proved that Cr2(k) has no non-
trivial closed normal subgroup with respect to its natural topology. On the other hand, Cantat
and Lamy [CL13] proved that Cr2(k) is not simple as an abstract group, and Lonjou generalized
this result to any field k [Lon16]. Here we prove that BCr2(k) is not a normal subgroup of Cr2(k).
For the kernel of the homomorphism BCrn(k) → Sym(Pn(k)), we prove that it is not a normal
subgroup of Crn(k) when k is finite and that it is trivial when k is infinite.

Proposition 6.7. For any field k, the group BCr2(k) is not a normal subgroup of Cr2(k).

Proof. Let f ∈ Cr2(k) be the standard quadratic involution f : [x : y : z] 7→ [yz : zx : xy] and
g ∈ PGL3(k) ⊂ BCr2(k) be any map sending [1 : 0 : 0] to [1 : 1 : 1]. Then f−1gf contracts the line
{x = 0} to the point

f−1gf([0 : y : z]) = f−1g([1 : 0 : 0]) = f−1([1 : 1 : 1]) = [1 : 1 : 1].
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Therefore, (f−1gf)−1 = f−1g−1f possesses a k-point in its indeterminacy locus, and thus cannot
be an element of BCr2(k).

Proposition 6.8. Let k be a finite field. Then the kernel of BCrn(k)→ Sym(Pn(k)), where n ≥ 2,
is not a normal subgroup of Crn(k).

Proof. Let N denote the kernel of BCrn(k) → Sym(P2(k)). Suppose, to the contrary, that N is a
normal subgroup of Crn(k). Let ` ∈ k[x2, . . . , xn] be a linear homogeneous polynomial. Consider
the birational map

f : [x0 : · · · : xn] 7→ [x2
0 : x1` : x0x2 : · · · : x0xn]

and its inverse
f−1 : [x0 : · · · : xn] 7→ [`x0 : x1x0 : x2` : · · · : xn`].

A straightforward computation shows that both f and f−1 contract two and only two hypersurfaces,
namely, the hyperplanes {x0 = 0} and {` = 0}. Moreover, f and f−1, respectively, contracts the
union {x0 = 0} ∪ {` = 0} onto

Bs(f−1) = {` = x0 = 0} ∪ {` = x1 = 0}, Bs(f) = {x0 = x1 = 0} ∪ {x0 = ` = 0}.

For every g ∈ N , we claim that

g({x0 = 0} ∪ {` = 0}) = {x0 = 0} ∪ {` = 0}. (6.3)

First note that g({x0 = 0} ∪ {` = 0}) is a hypersurface due to the facts that g is bijective and that
{x0 = 0}∪{` = 0} contains k-points. Since N is normal, we have fg = hf for some h ∈ N . Suppose
that g({x0 = 0} ∪ {` = 0}) is not contained in {x0 = 0} ∪ {` = 0}. Then fg({x0 = 0} ∪ {` = 0}) is
a hypersurface while hf({x0 = 0} ∪ {` = 0}) is not, contradiction. Therefore, we have

g({x0 = 0} ∪ {` = 0}) ⊂ {x0 = 0} ∪ {` = 0}.

The same argument with g replaced by g−1 implies that

{x0 = 0} ∪ {` = 0} ⊂ g({x0 = 0} ∪ {` = 0}).

Hence (6.3) follows. By applying the same argument with f replaced by αfα−1 for any α ∈ Aut(Pn),
we conclude that (6.3) holds for any union of two distinct rational hyperplanes. This implies that
g preserves any rational hyperplane of Pn.

Write g ∈ N as g([x0 : · · · : xn]) = [g0 : · · · : gn] where gi ∈ k[x0, . . . , xn] are homogeneous
polynomials without a common factor. As g preserves each coordinate hyperplane {xi = 0}, we
have gi = xig

′
i for some g′i ∈ k[x0, . . . , xn]. The fact that g−1 also preserves each {xi = 0} then

implies that
g−1({xi = 0}) = {gi = 0} = {xig′i = 0} = {xi = 0}

hence xig
′
i = aixi for some ai ∈ k∗. Therefore g′i = ai ∈ k∗ for all i and so g is linear. Since g ∈ N ,

it fixes |Pn(k)| = qn + qn−1 + · · ·+ q + 1 ≥ n+ 2 points in Pn, and thus equal to the identity map.
We conclude that N = {Id}, which is a contradiction because BCrn(k) is infinite by Lemma 6.4
and N is never trivial as it is of finite index in BCrn(k).

Proposition 6.9. If k is an infinite field, then BCrn(k)→ Sym(Pn(k)), where n ≥ 1, is injective.

Proof. Every element in the kernel of BCrn(k)→ Sym(Pn(k)) fixes Pn(k), which is a Zariski dense
subset of Pn. This forces such an element to be the identity map.
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