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Abstract

The aim of this paper is to estimate the irrationality of moduli spaces of hyperkähler
manifolds of types K3[n], Kumn, OG6, and OG10. We prove that the degrees of irra-
tionality of these moduli spaces are bounded from above by a universal polynomial in
the dimension and degree of the manifolds they parametrize. We also give a polyno-
mial bound for the degrees of irrationality of moduli spaces of (1, d)-polarized abelian
surfaces.

1 Introduction

Perhaps the coarsest invariant measuring birational complexity is the Kodaira dimension and
the computation of this invariant in the moduli context has been a guiding question in the
past decades. A much finer, but also harder to compute, collection of invariants measuring
birational complexity go by the name of measures of irrationality. One of them, called the
degree of irrationality, is defined for a variety X as the minimal possible degree of a dominant
rational map X 99K Pdim(X). This invariant, denoted as irr(X), was first introduced in [MH82]
and received a revived attention after [BDPE+17]. Notice that irr (X) = 1 if and only if X is
rational. In this sense, irr (X) measures how far is X from being rational. Deciding whether
a variety X is rational is a famously hard problem in algebraic geometry, suggesting that
the first approach to study irr(X) is to find bounds.

In the moduli context, Donagi proposed to find bounds on measures of irrationality for
classical moduli spaces such as those of curvesMg and principally polarized abelian varieties
Ag; see [BDPE+17, Problem 4.4]. These spaces are of general type when g is large enough
[Tai82,HM82,Mum83], so their degrees of irrationality are at least 2 for large g. To the best
of our knowledge, there is no known upper bound on their degrees of irrationality.

In this paper, we continue our study on the irrationality of various modular varieties
initiated in [ABL23]. Our main objects of study are moduli spaces of (1, d)-polarized abelian
surfaces A(1,d) and moduli spaces of projective hyperkähler manifoldsMγ

Λ,2d of known defor-
mation types. Similar to moduli spaces of curves and principally polarized abelian varieties,
components of A(1,d) and Mγ

Λ,2d become of general type when certain invariants grow; see
[O’G89, GS96, San97, Erd04] for the former and [GHS07, GHS10, GHS11, Ma18, BBBF] for
the latter. Our first main result gives bounds for degrees of irrationality of A(1,d).
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INTRODUCTION

Theorem 1.1. For any ε > 0 there exists a constant Cε > 0 independent of d such that

irr
(
A(1,d)

)
≤ Cε · d8+ε.

Further, for special series of d we have the following bounds:

• If d is squarefree, then
irr
(
A(1,d)

)
≤ Cε · d4+ε.

• If d is a perfect square, then

irr
(
A(1,d)

)
≤ Cε · d2+ε.

• Fix a, b, c ∈ Z which satisfy 4ac− b2 < 0. Suppose that d is squarefree and of the form
d = aX2−bXY +cY 2. Then for any ε > 0, there exists a constant Cε = Cε(a, b, c) > 0
independent of d such that

irr
(
A(1,d)

)
≤ Cε · d2+ε.

Our second main result concerns moduli spaces of projective hyperkähler manifolds. The
first examples of such manifolds, introduced in [Bea83], are Hilbert schemes of points on
K3 surfaces and generalized Kummer varieties. A hyperkähler manifold X is said to be of
K3[n]-type or Kumn-type if it is deformation equivalent respectively to the former or the
latter. In addition, there are two sporadic examples in dimensions 10 and 6 constructed in
[O’G99, O’G03]. In this case, X is of OG10 and OG6-type respectively. Up to now, every
known projective hyperkähler manifold is one of these four types.

For a projective hyperkähler manifold X, its second cohomology group H2(X,Z) carries
a bilinear form (·, ·) which turns it into a lattice known as the Beauville–Bogomolov–Fujiki
lattice. If the manifold X is of one of the known deformation types, then this lattice is isomor-
phic to one of the lattices ΛK3[n] , ΛKumn , ΛOG10, ΛOG6. If Λ is one of these lattices, we denote
by Mγ

Λ,2d the moduli space of pairs (X,H), where X is a projective hyperkähler manifold
with H2(X,Z) ∼= Λ, and H is a primitive polarization on X of degree (c1(H), c1(H)) = 2d
and divisibility γ (recall that the divisibility of x ∈ Λ is the positive generator of the ideal
(x,Λ) ⊂ Z). Note that the dimension of X, which equals 2n for some integer n, can be
read off Λ. The existence of such moduli spaces follows from [Vie95] and their irreducible
components are birational to orthogonal modular varieties due to the Torelli theorem [Ver13]
(see also [Mar11]). This lays the foundation for our second main result about their degrees
of irrationality.

Theorem 1.2. There exists a constant C > 0 such that, for every irreducible component
Y ⊂Mγ

Λ,2d, it holds that

irr(Y ) ≤ C · (n · d)19.

If we consider only Kumn-type hyperkähler manifolds, then this bound can be refined as

irr(Y ) ≤ C · (n · d)11.

Furthermore, for any ε > 0, there exists a constant Cε such that for every irreducible com-
ponent Y ⊂Mγ

Λ,2d, it holds that
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• irr(Y ) ≤ Cε · d14+ε if we consider only OG10-type hyperkähler manifolds,

• irr(Y ) ≤ Cε · d6+ε if we consider only OG6-type hyperkähler manifolds.

There are special series of n and d for which one can considerably improve the bound;
see Theorems 3.4, 3.9, 3.12, and 3.17.

Our approach is the same as in [ABL23] but with several additional challenges. First
of all, the Torelli theorem states that every irreducible component Y ⊂ Mγ

Λ,2d admits an
open embedding into an orthogonal modular variety associated with an even lattice M of
signature (2,m) for some m > 0. Hence the degree of irrationality of Y coincides with that
of Ω(M)

/
Γ, where Ω(M) is the period domain of M and Γ ⊂ O+(M) is an arithmetic group.

Here M and Γ depend on the deformation type, the degree, the divisibility, as well as on the
irreducible component Y . In each setting, this gives a collection of lattices Λn,d of signature
(2,m) and arithmetic groups Γn,d ⊂ O+ (Λn,d).

Assume that there exists an even lattice Λ# of signature (2,m′) independent of n, d and
embeddings Λn,d ↪→ Λ# for all n, d. Assume further that each Γn,d is extendable, that is, each
g ∈ Γn,d can be extended as an isometry g# ∈ O+(Λ#) preserving Λn,d whose restriction to
Λn,d recovers g. These assumptions induce morphisms of quasiprojective varieties

Pn,d := Ω(Λn,d)
/

Γn,d
fn,d−→ Ω(Λ#)

/
O+(Λ#) =: P+

Λ#
(1.1)

of finite degree onto their images Zn,d ⊆ P+
Λ#

. In particular, there is the immediate inequality

irr (Pn,d) ≤ deg(fn,d) · irr (Zn,d) .

The cycles [Zn,d] are examples of special cycles (also referred to as Kudla cycles). They
can be arranged in a generating series which turns out to be the Fourier expansion of a
modular form. More precisely, if we fix an embedding P+

Λ#
↪→ PN and let Zn,d be the closure

of Zn,d in PN , then Kudla’s modularity conjecture [Kud97,Kud04], proved in [Kud04,Zha09,
BWR15], implies that the integers deg

(
Zn,d

)
are coefficients of the Fourier expansion of a

Siegel modular form of weight 1
2

rk(Λ#). By taking a projection onto a general linear subspace

Pdim(Zn,d) ⊂ PN , one can conclude that irr(Zn,d) ≤ deg(Zn,d) and this can be estimated via
standard bounds on the growth of coefficients of Siegel modular forms.

There are two main challenges: the first one is to find an appropriate Λ# together with
embeddings Λn,d ↪→ Λ# such that the Γn,d are extendable. The second one is to bound
deg(fn,d). The general strategy was developed in [ABL23] and the bulk of the paper is
devoted to overcoming these two challenges.

Outline This paper is organized as follows. In Section 2, we set up notations and give
bounds on degrees of irrationality for special cycles. Then we establish bounds on degrees of
maps onto their images between orthogonal modular varieties induced by lattice embeddings.
In Section 3, we apply the results in the previous section to study the irrationality of moduli
spaces of projective hyperkähler varieties of known deformation types. Finally in Section 4,
we study the irrationality of the moduli space of (1, d)-polarized abelian surfaces and also
revisit the case of K3 surfaces.
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2 Period spaces, special cycles, and irrationality

The aim of this section is to introduce some upper bounds on the degrees of irrationality of
period spaces to be needed in later sections. The lemmas and notations established along
the way will also be used later.

2.1 Degrees of irrationality of special cycles Let us start by reviewing the main
results in [ABL23] about degrees of irrationality of special cycles on orthogonal Shimura
varieties. Let M be an even lattice of signature (2,m) for some m > 0 (the assumption of
[ABL23] that m is even was made for simplicity and is not necessary) and identify the dual
lattice M∨ := Hom(M,Z) as the space of vectors v ∈ M ⊗Z Q satisfying (v,M) ⊂ Z. The
discriminant group of M will be denoted as D(M) := M∨/M ; recall that its order is equal
to the absolute value of the discriminant disc(M). Let us further define O(M) to be the
group of isometries of M . Then the isometries which preserve the orientation of one (and
thus all) positive 2-plane in M ⊗ R form an index two subgroup O+(M) ⊂ O(M).

The period domain Ω(M) is defined as one of the two components of

{[w] ∈ P(M ⊗ C) | (w,w) = 0, (w,w) > 0} .

We consider this together with natural action of a finite index subgroup Γ ⊂ O+(M). Then,
the period space

PM(Γ) := Ω(M)/Γ

is an orthogonal Shimura variety that is quasi-projective, cf. [BB66]. More precisely, the
restriction of OP(M⊗C)(−1) to Ω(M) descends to a Q-line bundle L on PM(Γ) such that the
space H0(L⊗k), where k > 1 is such that L⊗k is a line bundle, can be identified with the
space Modk(Γ, 1) of modular forms for Γ of weight k and trivial character. A projective
model of PM(Γ) is then given by the Baily–Borel compactification

PM(Γ)
BB

= Proj

(⊕
k≥0

H0(L⊗k)

)
= Proj

(⊕
k≥0

Modk(Γ, 1)

)
.

It is normal and the complement of PM(Γ) has dimension at most one.
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2.2 MORPHISMS INDUCED BY LATTICE EMBEDDINGS

For every t ∈ Q≥0 and γ ∈ D(M), we consider the formal sum of hyperplane sections∑
1
2

(v,v)=t, v≡γ

v⊥ ⊂ Ω(M)

where the sum runs through all v ∈ M∨ and v⊥ := {[w] ∈ Ω (M) | (w, v) = 0} . Under the
map Ω (M) −→ PM (Γ), the formal sum descends to a Q-Cartier divisor Yt,γ ⊂ PM(Γ) called

a Heegner divisor. Let us fix a projective embedding PM(Γ)
BB
⊂ P and let Y t,γ ⊂ PM(Γ)

BB

be the closure of Yt,γ. By fundamental results of Kudla–Millson [KM90] and Borcherds
[Bor99], for any γ the series ∑

t∈Q≥0

deg
(
Y t,γ

)
qt

is the Fourier expansion of a scalar-valued modular form of weight m
2

+ 1, see also [Bru02]
for details. The growth of the Fourier coefficients of such a series are bounded by C · tm2 for
some positive constant C > 0. Since the degree of irrationality of a variety is at most the
degree of the variety under a projective embedding, the same argument as in the proof of
[ABL23, Theorem 2.6] yields:

Lemma 2.1. Assume m ≥ 3. Then there exists a constant C > 0 such that for all t ∈ Q>0

and γ ∈ D(M), it holds that
irr
(
Y t,γ

)
≤ C · t

m
2 .

As a higher codimensional analogue, for each r-tuple v = (v1, . . . , vr) ∈ (M∨)⊕r , one can
consider the linear subspace 〈v〉 ⊂ P(M ⊗C) spanned by v1, . . . , vr and the moment matrix
Q(v) = 1

2
((vi, vj)). Fix a semi-positive symmetric matrix T ∈ Symr (Q)≥0 and an r-tuple of

classes in the discriminant group γ ∈ D(M)⊕r. Then the formal sum∑
Q(v)=T, v≡γ

〈v〉⊥ ⊂ Ω (M) ,

which runs through all v ∈ (M∨)⊕r , descends to a cycle ZT,γ ⊂ PM (Γ). Borcherds’ result
on Heegner divisors has a generalization known as Kudla’s modularity conjecture, which is
proved in a series of works [Kud97, Kud04, Zha09, BWR15]. Using this result, we obtained
in [ABL23, Theorem 6.2] the following bound.

Lemma 2.2. Assume that 1 ≤ r ≤ m− 2. Then there exists a constant C > 0 such that for
all T ∈ Symr(Q)>0 and γ ∈ D(M)⊕r, it holds that

irr
(
ZT,γ

)
≤ C · det (T )1+m

2 .

2.2 Morphisms induced by lattice embeddings Let Λ and Λ# be even lattices of
signatures (2,m) and (2,m′) with 3 ≤ m ≤ m′. Suppose there is an embedding Λ ↪→ Λ#,
not necessarily primitive. We say that a finite index subgroup Γ ⊂ O+(Λ) is extendable with
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2.2 MORPHISMS INDUCED BY LATTICE EMBEDDINGS

respect to this embedding if for every g ∈ Γ, there exists g# ∈ O+(Λ#) such that g#(Λ) ⊂ Λ
and g#|Λ = g. In this setting, we have a natural map

ψΓ : PΛ(Γ) = Ω(Λ)/Γ // P+
Λ#

:= Ω(Λ#)/O+(Λ#) (2.1)

with finite fibers. This map is actually a morphism of algebraic varieties due to Borel’s
extension theorem [Bor72, Theorem 3.10].

In the following, we are going to bound the degree of ψΓ onto its image. To do so we
consider the stable orthogonal group

Õ(Λ) := {g ∈ O(Λ) | g acts trivially on D(Λ)} .

and define Õ+(Λ) := O+(Λ) ∩ Õ(Λ). Note that this is a finite index subgroup of O+(Λ).

Lemma 2.3. There exists an injection Õ+(Λ) ↪→ Õ+(Λ#) given by extending g ∈ Õ+(Λ) to

Λ# as the identity on Λ⊥Λ#. In particular, the group Õ+(Λ) is extendable with respect to the
embedding Λ ↪→ Λ#.

Proof. By the proof of [GHS13, Lemma 7.1], one can embed O+(Λ) into Õ(Λ#) by extending

g ∈ Õ+(Λ) to Λ# as the identity on Λ⊥Λ# . Note that a positive 2-plane in Λ⊗R corresponds
to a positive 2-plane in Λ# ⊗ R. Hence the extension of g is orientation-preserving, that is,
it lies in O+(Λ#). This completes the proof.

Lemma 2.3 allows us to insert Γ = Õ+(Λ) into ψΓ, which defines a morphism

ψ̃+ : P̃+
Λ := Ω(Λ)/Õ+(Λ) // P+

Λ#
= Ω(Λ#)/O+(Λ#).

Our first step is to bound the degree of this map onto its image assuming Λ ↪→ Λ# is a
primitive embedding. Recall that the points of Ω(Λ) correspond to Hodge structures of K3
type on the lattice Λ. For each [v] ∈ Ω(Λ), the transcendental lattice T (v) ⊂ Λ is the
minimal primitive sub-Hodge structure (in particular T (v) ⊂ Λ primitive) of the Hodge
structure induced by [v] with (T (v)⊗ C)2,0 = Cv.

Lemma 2.4. For a very general [v] ∈ Ω(Λ), we have T (v) = Λ.

Proof. For a very general [v] ∈ Ω(Λ), the hyperplane section v⊥ ⊂ Λ⊗C contains no element
from Λ because Λ consists of countably many points. In this situation, the Hodge structure
on Λ determined by [v] satisfies Λ1,1 = {0}, whence T (v) = (Λ1,1)⊥ = Λ.

The following lemma shows that transcendental lattices are unchanged under primitive
embeddings of lattices.

Lemma 2.5. Consider a primitive embedding ι : Λ ↪→ Λ#. For every [v] ∈ Ω(Λ), we have

ι(T (v)) = T (ι(v)).

That is, the transcendental lattice on Λ determined by [v] is mapped isomorphically onto the
transcendental lattice on Λ# determined by [ι(v)].
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2.2 MORPHISMS INDUCED BY LATTICE EMBEDDINGS

Proof. The Hodge substructure ι(T (v)) ⊂ Λ# has (2, 0)-part spanned by ι(v). This implies
that ι(T (v)) ⊃ T (ι(v)) due to the minimality of T (ι(v)). Now, T (ι(v)) appears as a Hodge
substructure of ι(Λ) with (2, 0)-part spanned by ι(v), so the containment is an equality due
to the minimality of ι(T (v)).

The next lemma gives a slight extension of [OS18, Lemma 4.3].

Lemma 2.6. Suppose that [v1], [v2] ∈ Ω(Λ) have the same image under ψ̃+. Then there
exists g ∈ O+(Λ#) such that there is an identification g(T (v1)) = T (v2) of Hodge structures.

Proof. By Lemma 2.5, we can view T (v1) (resp. T (v2)) as the transcendental lattice of the
Hodge structure on Λ# defined by v1 (resp. v2). By hypothesis, there exists g ∈ O+(Λ#)
such that g([v1]) = [v2], so it induces an isomorphism between the Hodge structures on Λ#

defined by [v1] and [v2]. Thus g(T (v1)) = T (v2) as they are minimal Hodge substructures
associated to g([v1]) = [v2].

Lemma 2.7. Suppose that [v1], [v2] ∈ Ω(Λ) are very general points such that there are
identities T (v1) = T (v2) = Λ as lattices, and assume that they are mapped to the same point

under ψ̃+. Then there exists g ∈ O+(Λ) such that g([v1]) = [v2].

Proof. By Lemma 2.6, there exists g ∈ Õ+(Λ#) such that g(T (v1)) = T (v2) as Hodge
structures (so that g([v1]) = [v2]). The hypothesis T (v1) = T (v2) = Λ implies that the
sublattice Λ ⊂ Λ# is preserved by g, which gives an element g|Λ ∈ O(Λ). We need to check
that g|Λ ∈ O+(Λ). Since it maps [v1] to [v2], it takes the positive 2-plane in Λ⊗R spanned by
Re(v1), Im(v1) to the positive 2-plane spanned by Re(v2), Im(v2), and preserves their natural
orientations. Hence g|Λ ∈ O+(Λ).

Lemma 2.8. When the embedding Λ ↪→ Λ# is primitive, the degree of ψ̃+ onto its image is
less than or equal to |O(D(Λ))|.

Proof. By Lemma 2.7, a very general fiber of ψ̃+ is contained in an orbit of O+(Λ) acting on

Ω(Λ)/Õ+(Λ). Such an orbit has cardinality at most |O+(Λ)/Õ+(Λ)|, which is in turn less or
equal to |O(D(Λ))|, so the statement follows.

We want to extend the previous lemma to the situation when Λ ↪→ Λ# is not necessarily
primitive. In this case, we let Λs ⊂ Λ# be the saturation of Λ. This is again an even lattice
of signature (2, n) and the embedding Λs ↪→ Λ# is primitive.

Lemma 2.9. When the embedding Λ ↪→ Λ# is not necessarily primitive, the degree of ψ̃+

onto its image is less than or equal to [Õ+(Λs) : Õ+(Λ)] · |O(D(Λs))|.

Proof. According to Lemma 2.3, there are injections Õ+(Λ) ↪→ Õ+(Λs) ↪→ Õ+(Λ#). This

induces maps P̃+
Λ → P̃

+
Λs
→ P+

Λ#
whose composition gives ψ̃+. The first map has fibers of

cardinality at most [Õ+(Λs) : Õ+(Λ)]; the second map has degree onto its image bounded
by |O(D(Λs))| due to Lemma 2.8. This proves the claim.

We can finally give the bound for the map ψΓ in (2.1).
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2.2 MORPHISMS INDUCED BY LATTICE EMBEDDINGS

Lemma 2.10. Let Λ ↪→ Λ# be an embedding and Γ ⊂ O+(Λ) be any extendable subgroup of
finite index. Let also Λs be the saturation of Λ in Λ#. Then the degree of ψΓ onto its image

is less than or equal to [Õ+(Λ) : Γ ∩ Õ+(Λ)] · [Õ+(Λs) : Õ+(Λ)] · |O(D(Λs))|.

Proof. Let Γ̃ := Γ ∩ Õ+(Λ). Then the map ψΓ̃ : PΛ(Γ̃) −→ P+
Λ#

factors as

PΛ(Γ̃) // PΛ(Γ)
ψΓ // P+

Λ#
.

Therefore, the degree of ψΓ onto its image is bounded by that of ψΓ̃. On the other hand, ψΓ̃

also factors as

PΛ(Γ̃) // P̃+
Λ

ψ̃+
// P+

Λ#
.

The first arrow is surjective with degree ≤ [Õ+(Λ) : Γ̃]. By Lemma 2.9, the degree of ψ̃+

onto its image is bounded by [Õ+(Λs) : Õ+(Λ)] · |O(D(Λs))|. Hence the claim follows.

In order to apply the above lemma, we need to bound each factor. For a lattice M
denote by `(M) the minimal number of generators of the discriminant group D(M). Then
an element in O(D(M)) is determined by the images of the generators. Hence there is a
bound

|O(D(M))| ≤ |Aut(D(M))| ≤ | disc(M)|`(M).

Lemma 2.11. Let Λ ↪→ Λ# be a not necessarily primitive embedding and Λs ⊂ Λ# be the
saturation of Λ. Then we have |O(D(Λs))| ≤ | disc(Λ)|`(Λ).

Proof. There is a chain of finite index embeddings Λ ⊂ Λs ⊂ Λ∨s ⊂ Λ∨. In particular, we
have equalities D(Λs) = Λ∨s /Λs = (Λ∨s /Λ)/(Λs/Λ), which is a quotient of Λ∨s /Λ by a finite
index subgroup. Notice also that Λ∨s /Λ ⊂ Λ∨/Λ = D(Λ). These facts imply `(Λs) ≤ `(Λ)
and disc(Λs) ≤ disc(Λ). Combining these inequalities gives

|O(D(Λs))| ≤ | disc(Λs)|`(Λs) ≤ | disc(Λ)|`(Λ),

as desired.

Let us bound another term in Lemma 2.10.

Lemma 2.12. It holds that [Õ+(Λs) : Õ+(Λ)] ≤ [Λs : Λ]rk(Λ) · |O(D(Λ))|.

Proof. Let O(Λs,Λ) be the group of isometries g ∈ O(Λs) such that g(Λ) ⊂ Λ. Then

[Õ+(Λs) : Õ+(Λ)] = [Õ+(Λs) : Õ+(Λs) ∩O(Λs,Λ)] · [Õ+(Λs) ∩O(Λs,Λ) : Õ+(Λ)].

By construction, O(Λs,Λ) can be seen as a subgroup of O(Λ), so the second factor on the

right hand side of the above equality is bounded by [O(Λ) : Õ+(Λ)] ≤ |O(D(Λ))|. For the

first factor, observe that for every g ∈ Õ+(Λs) the image g(Λ) is a sublattice of Λs of index

[Λs : Λ]; furthermore, g(Λ) = Λ if and only if g ∈ O(Λs,Λ). This means that Õ+(Λs) acts on

the set Σ of sublattices of Λs of index equal to [Λs : Λ] and with Õ+(Λs) ∩ O(Λs,Λ) as the

stabilizer of Λ. Thus [Õ+(Λs) : Õ+(Λs) ∩ O(Λs,Λ)] ≤ |Σ| ≤ [Λs : Λ]rk(Λ), where the second
inequality comes from [Zon21, Remark 3.4].
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2.3 AN EVEN POSITIVE LATTICE OF RANK TWO

2.3 An even positive lattice of rank two There is a special lattice that will play an
important role in our application, so we collect below some useful facts about it. Let a, d be
positive integers such that a+ d = 4t for some integer t. Then the lattice is given by

Q(a,d) :=

(
2a −a
−a 2t

)
. (2.2)

Denote by z1, z2 ∈ Q(a,d) the basis vectors with respect to the above matrix. Consider the
reflection isometry along z1 given by

σz1 : Q(a,d) −→ Q(a,d) : x 7−→ x− 2
(x, z1)

(z1, z1)
z1.

Our goal is to find an embedding of Q(a,d) into certain lattices that are defined independently
of a and d such that σz1 is extendable.

In the following, we will consider the sublattice

W = 〈w1, w2〉 ⊂ Q(a,d) where w1 := z1 and w2 := 2z2 + z1.

Notice that z1 = w1 and z2 = 1
2
(w2 − w1), so W has index two in Q(a,d). Moreover, we have

w2
1 = 2a, w2

2 = 2d, and (w1, w2) = 0, so W is isomorphic to Z(2a) ⊕ Z(2d). Our strategy
for finding a desired embedding for Q(a,d) starts with finding an embedding for W with nice
properties. We will need Lagrange’s four square theorem, which states that any nonnegative
integer a can be written as the sum of four squares, a = a2

1 + a2
2 + a2

3 + a2
4. It turns out that

a can be written as the sum of four coprime squares if and only if 8 does not divide a: see
[CH07, Theorem 1] and also [Luc16].

Lemma 2.13. Suppose that both a and d are not divisible by 4. Then there exists a primitive
embedding Q(a,d) ↪→ E8 such that σz1 is extendable.

Proof. Because a and d are not divisible by 4, by [CH07, Theorem 1] each of them can be
written as a sum of four coprime squares: a = a2

1 +a2
2 +a2

3 +a2
4 and d = b2

1 + b2
2 + b2

3 + b2
4. The

hypothesis also implies that the ai (resp. the bi) cannot be all even or all odd. We claim
that, upon rearranging the indices, we can assume bi ± ai is odd for all i. Indeed, we can
write a+ d = 4t as

4∑
i=1

a2
i +

4∑
j=1

b2
j ≡ 0 mod 4.

A direct check shows that the number of even ai is the same as the number of odd bi. Hence,
upon rearranging the indices, we can assume that ai is even if and only if bi is odd for each
i ∈ {1, 2, 3, 4}, which implies that bi ± ai is odd for each i.

Consider now the vector space
⊕8

i=1 Qei with the standard Euclidean product. Then
the lattice E8 can be realized as the sublattice in

⊕8
i=1 Qei whose coordinates are either

all integers or all half integers such that the sum of all coordinates is even. There is an
embedding W ↪→ E8 given by

w1 = a1(e1 − e5) + a2(e2 − e6) + a3(e3 − e7) + a4(e4 − e8),

w2 = b1(e1 + e5) + b2(e2 + e6) + b3(e3 + e7) + b4(e4 + e8).
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Now we have

z2 =
1

2
(w2 − w1) =

4∑
i=1

bi − ai
2

ei +
4∑
i=1

bi + ai
2

ei+4

which belongs to E8 since the bi ± ai are all odd. Hence the embedding extends to an
embedding Q(a,d) ↪→ E8. To check that σz1 extends, consider the involution σ : E8 → E8

defined by σ(ei) = e4+i for i = 1, 2, 3, 4. Then σ(w1) = −w1 = σz1(w1) and σ(w2) = w2 =
σz1(w2), so that σ(z1) = −z1 = σz1(z1) and σ(z2) = z2 + z1 = σz1(z1). This shows that σ is
an extension of σz1 .

Let us prove that the embedding Q(a,d) ↪→ E8 is primitive. Every x ∈ E8 ∩ (Q(a,d) ⊗ Q)
can be written as

x =
4∑
i=1

(
ni +

δ

2

)
ei +

4∑
i=1

(
ni+4 +

δ

2

)
ei+4 =

A

B
z1 +

C

D
z2

where ni, ni+4 ∈ Z, δ ∈ {0, 1}, A,B,C,D ∈ Z with A,B coprime and C,D coprime. Ex-
panding z1, z2 in e1, . . . , e8 and comparing the coefficients gives

ni +
δ

2
=
A

B
ai +

C

2D
(bi − ai), ni+4 +

δ

2
= −A

B
ai +

C

2D
(bi + ai), for i = 1, . . . , 4

which implies

ni + ni+4 + δ =
C

D
bi, ni − ni+4 =

(
2A

B
− C

D

)
ai, for i = 1, . . . , 4. (2.3)

The first set of equations in (2.3) implies that D divides all the bi. Since the bi are coprime,
we get D = 1. The second set of equations shows that B divides 2ai for i = 1, . . . , 4. Since
the ai are coprime, we conclude that B = 1 or B = 2. If B = 1, then x ∈ Q(a,d) and we
are done. If B = 2, then A is odd. In this case, adding the two sets of equations in (2.3)
together modulo 2 gives

δ ≡ C(bi − ai) + ai ≡ C + ai mod 2

where the second equality holds as bi − ai are all odd. Hence ai ≡ δ − C mod 2, so the ai
are all even or all odd, which is a contradiction. Therefore, the embedding Q(a,d) ↪→ E8 is
primitive. This completes the proof.

Lemma 2.14. Suppose that one, and hence both, of a and d are divisible by 4. Then there
exists an embedding Q(a,d) ↪→ A⊕10

1 such that σz1 is extendable. Moreover, if Q(a,d),s is the
saturation, then [Q(a,d),s : Q(a,d)] = 2.

Proof. Let us write a
4
− 1 = a2

1 + · · · + a2
4 and d

4
− 1 = b2

1 + · · · + b2
4 using Lagrange’s four

square theorem. Then there is an embedding W ↪→ A⊕10
1 defined by

w1 = 2a1e1 + 2a2e2 + 2a3e3 + 2a4e4 + 2e5,

w2 = 2b1e6 + 2b2e7 + 2b3e8 + 2b4e9 + 2e10,

10
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where {e1, . . . , e10} is the canonical basis for A⊕10
1 . Since w2−w1 is divisible by 2, this extends

to an embedding of Q(a,d) by taking z1 = w1 and z2 = 1
2
(w2 − w1). The reflection σz1 = σw1

extends to the involution σ : A⊕10
1 → A⊕10

1 defined by σ(ei) = −ei and σ(e5+i) = e5+i for
i = 1, . . . , 5. Finally, one can verify that the saturation is given by Q(a,d),s =

〈
1
2
z1, z2

〉
.

Indeed, if p, q ∈ Q are such that p
(

1
2
z1

)
+qz2 ∈ A⊕10

1 , then the coefficient of e10 is q, showing
that q ∈ Z, and the coefficient of e5 is q − p, showing that p ∈ Z. This proves the last
assertion.

Now consider the lattice Z(2a) ⊕ Z(2d) with canonical basis {z1, z2} and let σz1 denote
the reflection along z1. With a similar strategy, we can find an embedding for this lattice
independent of a and d such that σz1 extends.

Lemma 2.15. There exists a primitive embedding Z(2a) ⊕ Z(2d) ↪→ A⊕10
1 such that σz1

extends. When 8 - a and 8 - d, there exists a primitive embedding Z(2a)⊕Z(2d) ↪→ A⊕8
1 such

that σz1 extends

Proof. Write a− 1 and d− 1 as sums of four squares so that a = a2
1 + a2

2 + a2
3 + a2

4 + 1 and
d = b2

1 + b2
2 + b2

3 + b2
4 + 1. Then the embedding of Z(2a)⊕ Z(2d) into A⊕10

1 is defined by

z1 = a1e1 + · · ·+ a4e4 + e5, z2 = b1e5 + · · ·+ b4e9 + e10.

One can check directly that this is a primitive embedding. Moreover, σz1 extends to the
involution σ : A⊕10

1 → A⊕10
1 defined by σ(ei) = −ei and σ(e5+i) = e5+i for i = 1, . . . , 5.

If 8 divides neither a nor d, we can write them as the sum of four coprime squares
a = a2

1 + · · ·+ a2
4 and d = b2

1 + · · ·+ b2
4. Then the embedding into A⊕8

1 is defined by

z1 = a1e1 + · · ·+ a4e4, z2 = b1e5 + · · ·+ b4e8,

which is again primitive. Furthermore, σz1 extends to the involution σ : A⊕8
1 → A⊕8

1 defined
by σ(ei) = −ei and σ(e4+i) = e4+i for i = 1, . . . , 4.

2.4 Degrees of irrationality of period spaces Putting the previous results together
allows us to generalize the techniques in [ABL23, Section 6]. Suppose that Λ is an even
lattice of signature (2,m) with an embedding into an even lattice Λ# of signature (2,m′),
where 1 ≤ m′−m ≤ m′−2. Consider an arithmetic subgroup Γ ⊂ O+(Λ) which is extendable
to Λ#. We are going to bound the degree of irrationality of the period space PΓ(Λ) in terms
of this embedding. Let us first deal with the case when the embedding is primitive.

Lemma 2.16. Suppose that the embedding Λ ↪→ Λ# is primitive and consider the natural
map ψΓ : PΛ(Γ) −→ P+

Λ#
. Then there exists a constant C depending only on Λ# such that

with Y := PΛ(Γ), we have the inequalities

irr(ψΓ(Y )) ≤ C · | disc(Λ)|1+m′
2 ,

irr(Y ) ≤ C · [Õ+(Λ) : Γ ∩ Õ+(Λ)] · |O(D(Λ))| · | disc(Λ)|1+m′
2 .

11
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Proof. Choose a basis w = (w1, . . . , wm′−m) for the orthogonal complement Λ⊥Λ# with mo-
ment matrix T =

(
1
2
(wi, wj)

)
. Then Ω(Λ) = 〈w〉⊥ ⊂ Ω(Λ#). Thus ψΓ(Y ) appears as a

Zariski open subset of a component of the special cycle ZT,0 ⊂ P+
Λ#

. By Lemma 2.2, there

exist a constant C ′ depending only on Λ# such that

irr(ψΓ(Y )) ≤ C ′ · | det(T )|1+m′
2 .

Note that (cf. [Huy16, Section 14.0.2])

det(T ) =
1

2m′−m
· | disc(Λ⊥)| = 1

2m′−m
· | disc(Λ#)|
| disc(Λ)|

·
[
Λ# : Λ⊕ Λ⊥

]2
.

From [GHS13, Section 7, (36)], one can deduce that
[
Λ# : Λ⊕ Λ⊥

]
≤ | disc(Λ)|. Hence

|det(T )| ≤ |disc(Λ#)| · | disc(Λ)|

By setting C := C ′ · | disc(Λ#)|1+m′
2 , we obtain the first inequality

irr(ψΓ(Y )) ≤ C · | disc(Λ)|1+m′
2 .

By Lemma 2.10, we have

irr(Y ) ≤ irr(ψΓ(Y )) · [Õ+(Λ) : Γ ∩ Õ+(Λ)] · |O(D(Λ))|.

Combining this with the previous inequality gives us the second inequality.

Now let us deduce a bound when the embedding is not necessarily primitive.

Lemma 2.17. Let Λs ⊂ Λ# be the saturation of Λ and assume that [Λs : Λ] ≤ D for some
constant D. Let also `(Λ) be the minimum number of generators for D(Λ). Then there exists
a constant C depending only on Λ# and D such that with Y = PΛ(Γ), it holds that

irr(Y ) ≤ C · [Õ+(Λ) : Γ ∩ Õ+(Λ)] · | disc(Λ)|1+m′
2

+2`(Λ).

Proof. By Lemma 2.10, the degree of ψΓ : PΛ(Γ) −→ P+
Λ#

onto its image is bounded by

[Õ+(Λ) : Γ ∩ Õ+(Λ)] · [Õ+(Λs) : Õ+(Λ)] · |O(D(Λs))|.

Lemma 2.11 shows that |O(D(Λs))| ≤ | disc(Λ)|`(Λ). Combining this with Lemma 2.12 gives

[Õ+(Λs) : Õ+(Λ)] · |O(D(Λs))| ≤ [Λs : Λ]m+2 · |O(D(Λ))| · | disc(Λ)|`(Λ)

≤ Dm+2 · | disc(Λ)|2`(Λ) ≤ Dm′+2 · | disc(Λ)|2`(Λ).

As a result, we obtain

irr(Y ) ≤ irr(ψΓ(Y )) · [Õ+(Λ) : Γ ∩ Õ+(Λ)] ·Dm′+2 · | disc(Λ)|2`(Λ).

Recall from the proof of Lemma 2.11 that | disc(Λs)| ≤ | disc(Λ)|. To bound irr(ψΓ(Y )), first
notice that PΛ(Γ) = PΛs(Γ), so we can consider ψΓ as a map from PΛs(Γ) to P+

Λ#
. Then

Lemma 2.16 shows that there exists C ′ > 0 depending only on Λ# such that

irr(ψΓ(Y )) ≤ C ′ · | disc(Λs)|1+m′
2 ≤ C ′ · | disc(Λ)|1+m′

2 .

Merging this into the above inequality with C = C ′ ·Dm′+2 gives the bound we want.
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MODULI SPACES OF PROJECTIVE HYPERKÄHLER MANIFOLDS

3 Moduli spaces of projective hyperkähler manifolds

Let X be a hyperkähler manifold of types K3[n], Kumn, OG6, or OG10. Then H2(X,Z)
with the Beauville–Bogomolov–Fujiki form is an even lattice of signature (3, b2(X)− 3). For
each h ∈ H2(X,Z), one defines its divisibility divΛ(h) to be the positive generator of the
ideal (h,H2(X,Z)) ⊂ Z. Let us fix a lattice Λ isometric to H2(X,Z) and let γ, d be positive
integers. Then the pairs (X ′, H) of hyperkähler manifolds equipped with a primitive ample
divisor H such that H2(X,Z) ∼= Λ and h := c1(H) satisfies divΛ(h) = γ, (h, h) = 2d form a
moduli space Mγ

Λ, 2d of dimension b2(X)− 3.

The monodromy group Mon2(X) ⊂ O+(H2(X,Z)) for all types of X considered in this
paper is normal and of finite index. Via a marking Λ ∼= H2(X,Z), this defines a subgroup
Mon2(Λ) ⊂ O+(Λ) independent of the choice of markings. Let h ∈ Λ be a primitive ample
class and define Λh := h⊥Λ. Then Λh has signature (2, b2(X)− 3) and discriminant

| disc(Λh)| =
2d · |disc(Λ)|

γ2
. (3.1)

The elements of Mon2(Λ) fixing h form a finite index subgroup Mon2(Λ, h), which can be
identified as a subgroup of O+(Λh) by restriction. Let Y ⊂ Mγ

Λ,2d be the irreducible com-
ponent containing X. Then there exists an open embedding

Y �
�

// Ω(Λh)
/

Mon2(Λ, h)

as guaranteed by the Torelli theorem [Ver13]; see also [Mar11, Lemma 8.1]. This allows us
to bound the degree of irrationality of Mγ

Λ,2d using the results in the previous section. To
obtain a universal bound for all the moduli spaces, what we need to do is to find embeddings
of all possible Λh into a common lattice Λ# such that Mon2(Λ, h) is extendable.

3.1 Hyperkähler manifolds of K3[n]-type Let X be a hyperkähler manifold deforma-
tion equivalent to the Hilbert scheme of length n subschemes on a K3 surface. Here we
assume that n ≥ 2 since the case of K3 surfaces has already been treated in [ABL23]. For
such an X, the lattice H2(X,Z) is isomorphic to

Λ = ΛK3[n] := E8(−1)⊕2 ⊕ U⊕3 ⊕ Zδ where (δ, δ) = −2(n− 1).

This is an even lattice of signature (3, 20). According to [Mar11, Lemma 9.2], we have

Mon2(Λ) = Ô+(Λ) :=
{
g ∈ O+(Λ)

∣∣ g|D(Λ) = ±id
}
.

Take a primitive h ∈ Λ with (h, h) > 0. Then h is in the same Mon2(Λ)-orbit as γ(e+tf)−aδ
for suitable t and a, see [BBBF, Lemma 3.4]. Here {e, f} is the standard basis of the first
copy of U in Λ. In particular,

Λh
∼= E8(−1)⊕2 ⊕ U⊕2 ⊕Qh(−1)

where Qh(−1) ⊂ U ⊕ Zδ is a certain negative definite rank two sublattice. We will need an
explicit description of this lattice only in the cases of divisibility γ = 1, 2.
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Lemma 3.1. If γ = 1, then Qh
∼= Z(2(n − 1)) ⊕ Z(2d). If γ = 2, then Qh

∼= Q(n−1,d) as
defined in (2.2).

Proof. This is an immediate consequence of [BBBF, Lemma 3.4 and Equation (31)]. Indeed,
when γ = 1 one can take h = e + df , and in this case Qh(−1) is generated by z1 = δ and

z2 = e− df . When γ = 2 one can take h = 2(e+ tf)− δ, where t = d+(n−1)
4

(this should be
an integer, otherwise there is no corresponding hyperkähler manifold: see [BBBF, Remark
3.3] ). In this case Qh(−1) is generated by z1 = (n− 1)f − δ and z2 = e− tf .

We keep the notation {z1, z2} as generators of Qh(−1) in the cases described above.

The lattice Λh has signature (2, 20) and discriminant disc(Λh) = 4d(n−1)
γ2 . On can verify by

definition that γ divides both 2d and 2(n− 1). The monodromy group Mon2(Λ, h) coincides

with Ô+(Λ, h) = O(Λ, h) ∩ Ô+(Λ), which can then be described explicitly as follows:

Lemma 3.2. Let (n, d, γ) be as above with Mγ

K3[n],2d
non-empty.

1. If n = 2 or γ ≥ 3, then Ô+(Λ, h) = Õ+(Λh).

2. If n ≥ 3 and γ = 1, 2, then Ô+(Λ, h) = 〈Õ+(Λh), σz1〉, where σz1 ∈ O+(Λh) is the
reflection along the primitive vector z1 ∈ Qh(−1).

Proof. The first case is proved in [BBBF, Lemma 3.6 and Proposition 3.7]. The second case
is proved in [BBBF, Section 5].

With this we can state the extendability result that we are going to need:

Lemma 3.3. In each of the following cases, one can find an embedding Λh ↪→ Λ# for some

even lattice Λ# such that Ô+(Λ, h) extends:

1. If n = 2 or γ ≥ 3, then one can choose Λ# = U⊕2 ⊕ E8(−1)⊕3 with the embedding
primitive.

2. If n ≥ 3 and γ = 1, then one can choose Λ# = U⊕2 ⊕ E8(−1)⊕2 ⊕A1(−1)⊕10 with the
embedding primitive.

3. If n ≥ 3, γ = 1, and 8 - n − 1, 8 - d, then Λ# = U⊕2 ⊕ E8(−1)⊕2 ⊕ A1(−1)⊕8 and the
embedding can be chosen primitive.

4. If n ≥ 3, γ = 2, and 4 - n− 1, 4 - d, then Λ# = U⊕2⊕E8(−1)⊕3 and the embedding can
be chosen primitive.

5. If n ≥ 3, γ = 2, and 4 | n− 1, 4 | d, then Λ# = U⊕2 ⊕E8(−1)⊕2 ⊕A1(−1)⊕10. Let Λh,s

be the saturation. Then [Λh,s : Λh] = 2.

Proof. Let us prove the statement case-by-case.

1. If n = 2 or γ ≥ 3, the group Ô+(Λ, h) coincides with the stable orthogonal group

Õ+(Λh) by Lemma 3.2. Hence, it is extendable with respect to any embedding. We
can simply choose a primitive embedding Qh(−1) ↪→ E8(−1) (see [Huy16, Theo-
rem 14.1.15]) to obtain a primitive embedding of Λh into U⊕2 ⊕ E8(−1)⊕3.

14



3.1 HYPERKÄHLER MANIFOLDS OF K3[N ]-TYPE

In all the other cases, Lemma 3.2 shows that Ô+(Λ, h) = 〈Õ+(Λh), σz1〉. Suppose we
can find an embedding Qh(−1) ↪→ M such that σz1 on Qh(−1) extends to σ on M . Then
we have an embedding of Λh = U⊕2 ⊕ E8(−1)⊕2 ⊕Qh(−1) into U⊕2 ⊕ E8(−1)⊕2 ⊕M such
that σz1 extends to Id ⊕ σ, where Id is the identity map on U⊕2 ⊕ E8(−1)⊕2. Since Id ⊕ σ
acts as the identity on U⊕2, it is orientation-preserving. Moreover, if we let Qh(−1)s be the
saturation of Qh(−1) inside M , then [Λh,s : Λh] = [Qh(−1)s : Qh(−1)]. Thus, the problem is
reduced to finding appropriate embeddings of Qh(−1).

2. If n ≥ 3 and γ = 1, Lemma 3.1 shows that Qh(−1) ∼= Z(−2(n − 1)) ⊕ Z(−2d). Then
Lemma 2.15 gives a primitive embedding Qh(−1) ↪→ A⊕10

1 (−1) such that σz1 extends.

3. If n ≥ 3, γ = 1, 8 - n−1, 8 - d, Lemma 3.1 shows that Qh(−1) ∼= Z(−2(n−1))⊕Z(−2d).
Then Lemma 2.15 gives a primitive embedding Qh(−1) ↪→ A⊕8

1 (−1) such that σz1
extends.

4. If n ≥ 3, γ = 2, and 4 - n − 1, 4 - d, Lemma 3.1 shows that Qh(−1) ∼= Q(n−1,d)(−1).
Then Lemma 2.13 gives a primitive embedding Qh(−1) ↪→ E8(−1) such that σz1 ex-
tends.

5. If n ≥ 3, γ = 2, and 4 | n − 1, 4 | d, Lemma 3.1 shows that Qh(−1) ∼= Q(n−1,d)(−1).
Then Lemma 2.14 gives an embedding Qh(−1) ↪→ A⊕10

1 (−1) such that σz1 extends. In
this case, we have [Qh(−1)s : Qh(−1)] = 2.

This completes the proof.

We can now deduce our result for hyperkähler manifolds of K3[n]-type.

Theorem 3.4. There exists a constant C > 0 such that for any n, d, γ and for any irreducible
component Y ⊂Mγ

K3[n],2d
it holds that

irr(Y ) ≤ C · (n · d)19.

Furthermore, for any ε > 0, there exists a constant Cε > 0 such that the above bound can be
refined in each case as follows:

1. If n = 1, then irr(Y ) ≤ Cε · (n · d)14+ε.

2. If n = 2 or γ ≥ 3, then irr(Y ) ≤ C · (n · d)16. If furthermore γ, 2d
γ
, 2(n−1)

γ
are coprime,

then irr(Y ) ≤ Cε · (n · d)14+ε.

3. If n ≥ 3 and γ = 1, then irr(Y ) ≤ Cε · (n · d)15+ε. If furthermore 8 - n − 1 and 8 - d,
then irr(Y ) ≤ Cε · (n · d)14+ε.

4. If n ≥ 3, γ = 2 and 4 - n− 1, 4 - d, then irr(Y ) ≤ C · (n · d)16.

Proof. Recall that the component Y is birational to Ω(Λh)/Mon2(Λ, h) for some h ∈ Λ. Let
us start the proof by analyzing the situation in each case.
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1. If n = 1, note that Mγ

K3[1],2d
is nonempty if and only if γ = 1 and in this case it is

irreducible. Then it was proven in [ABL23] that for any ε > 0 there exists C1,ε > 0
such that for all d > 0, it holds that

irr(Mγ

K3[1],2d
) ≤ C1,ε · (n · d)14+ε. (3.2)

2. If n = 2 or γ ≥ 3, Lemma 3.3 shows that we can find a primitive embedding of Λh into
the lattice Λ# = U⊕2 ⊕ E8(−1)⊕3 such that Mon2(Λ, h) is extendable. Note that the
lattice Λ# is independent of n, d, γ, and Y . Then Lemma 2.16 shows that there is a
constant C2 depending only on Λ# such that

irr(Y ) ≤ C2 · |O(D(Λh))| · | disc(Λh)|14, (3.3)

where we use [Õ+(Λh) : Mon2(Λ, h) ∩ Õ+(Λh)] = 1 from Lemma 3.2. On the other
hand, D(Λh) = D(Qh(−1)) is generated by at most 2 elements, hence Lemma 2.11
shows that |O(D(Λh))| ≤ | disc(Λh)|2, thus

irr(Y ) ≤ C2 · | disc(Λh)|16 ≤ C2 · (n · d)16, (3.4)

where the second inequality follows from | disc(Λh)| = 4d(n−1)
γ2 . If γ, 2d

γ
, 2(n−1)

γ
are co-

prime, then since O (Λh) −→ O (D (Λh)) is surjective (see [Huy16, Theorem 2.4]), by
[GHS10, Proposition 3.12 (ii)], we have

|O(D(Λh))| ≤ 2ρ(2(n−1)/γ)+1 ≤ 2 · 2ρ(
2(n−1)
γ
· 2d
γ ),

where ρ(k) is the number of prime factors of k. It holds that 2ρ(k) ≤ ν(k) = O(kε) for

all ε > 0, where ν(k) is the number of positive divisors of k. Since disc(Λh) = 4d(n−1)
γ2 ,

this shows that for every ε > 0, there exists a constant C ′2,ε such that |O(D(Λh))| ≤
C ′2,ε · | disc(Λh)|ε. Plugging this into (3.3) and setting C2,ε = C2 ·C ′2,ε, we get the bound.

irr(Y ) ≤ C2,ε · | disc(Λh)|14+ε ≤ C2,ε · (n · d)14+ε, (3.5)

where the second inequality comes from plugging in | disc(Λh)| = 4d(n−1)
γ2 .

3. If n ≥ 3 and γ = 1, then Lemma 3.3 shows that we have a primitive embedding of
Λh into U⊕2 ⊕ E8(−1)⊕2 ⊕ A1(−1)⊕10 such that Mon2(Λ, h) is extendable. Further,

since γ, 2d
γ
, and 2(n−1)

γ
are coprime in this case, by Lemma 2.16 and [GHS10, Proposi-

tion 3.12 (ii)], we get a constant C3,ε such that

irr(Y ) ≤ C3,ε · (n · d)15+ε. (3.6)

If furthermore 8 - d, 8 - n − 1, then Lemma 3.3 shows that we can find a primitive
embedding of Λh into the lattice U⊕2 ⊕E8(−1)⊕2 ⊕A1(−1)⊕8 such that Mon2(Λ, h) is
extendable. Moreover, [GHS10, Proposition 3.12 (ii)] shows that for any ε > 0, there
exists a constant C ′3,ε such that |O(D(Λh))| ≤ C ′3,ε · | disc(Λh)|ε. Hence, reasoning as in
the proof of inequality (3.5) we see that for any ε > 0, there exists C ′3,ε > 0 such that

irr(Y ) ≤ C ′3,ε · (n · d)14+ε. (3.7)
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4. Suppose n ≥ 3 and γ = 2. If 4 - n − 1, 4 - d, Lemma 3.3 shows that we can find a
primitive embedding of Λh into the lattice U⊕2 ⊕ E8(−1)⊕3 such that Mon2(Λ, h) is
extendable. Then reasoning as in the proof of equation (3.4) we see that there exists
a constant C4 such that

irr(Y ) ≤ C4 · (n · d)16. (3.8)

If 4 | d and 4 | n−1, then Lemma 3.3 shows that we can find an embedding of Λh into the
lattice U⊕2⊕E8(−1)⊕2⊕A1(−1)⊕10 such that Mon2(Λ, h) is extendable. The saturation
Λh,s of Λh satisfies [Λh,s : Λh] = 2; the group D(Λh) = D(Qh(−1)) is generated by at

most 2 elements; Lemma 3.2 shows that [Õ+(Λh) : Mon2(Λ, h) ∩ Õ+(Λh)] = 1. Hence,
Lemma 2.17 asserts that there exists a constant C5 > 0 such that

irr(Y ) ≤ C5 · | disc(Λh)|19 ≤ C5 · (n · d)19, (3.9)

where the second inequality comes from | disc(Λh)| = 4d(n−1)
γ2 .

Set C = max{C1,5, C2, C3,4, C4, C5} and Cε = max{C1,ε, C2,ε, C3,ε, C
′
3,ε}. The main in-

equality in the statement then follows from (3.2), (3.4), (3.6), (3.8), and (3.9). The inequality
in Case 1 follows from (3.2), the inequalities in Case 2 follow from (3.4) and (3.5), the in-
equalities in Case 3 follow from (3.6) and (3.7) and the inequality in Case 4 follows from
(3.8).

3.2 Hyperkähler manifolds of Kumn type Let X be a projective hyperkähler manifold
of dimension 2n deformation equivalent to the generalized Kummer variety of an abelian
surface. In this case, the even lattice H2(X,Z) has signature (3, 4) and is isomorphic to

Λ = ΛKumn
:= U⊕3 ⊕ Zη where (η, η) = −2(n+ 1).

According to [Mon16] and [Mar23, Theorem 1.4], the monodromy group Mon2(Λ) is a sub-

group of index at most two of Ô+(Λ) which contains S̃O
+

(Λ) = Õ+ (Λ)∩ SO (Λ) . In partic-
ular, we have the following:

Lemma 3.5. Let h ∈ Λ be a primitive vector of divisibility γ and positive square (h, h) = 2d.
Up to the action of Mon2(Λ), we can assume h = γ (e+ tf)−aη, where {e, f} is the standard
basis for the first copy of U , and t, a are integers such that

d = γ2t− (n+ 1)a2, gcd(a, γ) = 1, 0 ≤ a < γ.

Proof. Let us prove that, up to the action of S̃O
+

(Λ) ⊂ Mon2(Λ), the vector h can be
expressed in the desired form . By Eichler’s Criterion (cf. [Son23, Proposition 2.15]), two

primitive vectors h1, h2 ∈ Λ are in the same S̃O
+

(Λ)-orbit if and only if they have the same

square (h1, h1) = (h2, h2) = 2d, the same divisibility γ and the same classes
[
h1

γ

]
=
[
h2

γ

]
in

D(Λ) = D(Zη) ∼= Z/2(n + 1)Z. We can then proceed as in the proofs [BBBF, Proposition
3.1 and Lemma 3.4], where we only need to replace U⊕3 ⊕E8(−1)⊕2 and n− 1 respectively
by U⊕3 and n+ 1.

17



3.2 HYPERKÄHLER MANIFOLDS OF KUMN TYPE

Let h ∈ Λ be a primitive vector as in Lemma 3.5. Then

Λh
∼= U⊕2 ⊕Qh(−1)

where Qh(−1) ⊂ U ⊕ Zη is a certain negative definite rank two sublattice which can be
described explicitly:

Lemma 3.6. The rank two lattice Qh(−1) is generated by

z1 :=
2a(n+ 1)

γ
f − η and z2 := e− tf. (3.10)

In particular, if γ = 1, then Qh
∼= Z(2(n + 1)) ⊕ Z(2d). If γ = 2 then Qh

∼= Q(n+1,d) as
defined in (2.2). If γ ≥ 3, then

Qh =

(
2(n+ 1) −2a(n+1)

γ

−2a(n+1)
γ

2t

)

with a, t, γ as in Lemma 3.5.

Proof. This can be proved using Lemma 3.5 in the same way as one proves [BBBF, Lemma 3.4
and Equation (31)], where one only need to replace U⊕3 ⊕E8(−1)⊕2 and n− 1 respectively
by U⊕3 and n+ 1.

The lattice Λh has signature (2, 4) and discriminant disc(Λh) = 4d(n+1)
γ2 . Note that γ

divides both 2d and 2(n+ 1). The monodromy group Mon2(Λ, h) is a subgroup of index at

most two of Ô+(Λ, h) = O(Λ, h) ∩ Ô+(Λ) which can be described explicitly as follows.

Lemma 3.7. Let (n, d, γ) be as above with Mγ

Kum[n],2d
non-empty.

1. If γ ≥ 3, then Ô+(Λ, h) = Õ+(Λh).

2. If γ = 1, 2 then Ô+(Λ, h) = 〈Õ+(Λh), σz1〉, where σz1 ∈ O+(Λh) is the reflection along
z1 ∈ Qh(−1) of the basis (3.10).

Proof. This can be proved in the same way as [BBBF, Lemma 3.6 and Proposition 3.7] with
` replaced by η, (n − 1) replaced by (n + 1), and U⊕2 ⊕ E8(−1)⊕2 ⊕ Qh(−1) replaced by
U⊕2 ⊕Qh(−1).

As a consequence, we obtain an analogue of Lemma 3.3.

Lemma 3.8. There exists a lattice Λ# together with an embedding Λh ↪→ Λ# as follows such

that Ô+(Λ, h) extends.

1. If γ ≥ 3, then Λ# = U⊕2 ⊕ E8(−1); the embedding is primitive.

2. If γ = 1, then Λ# = U⊕2 ⊕ A1(−1)⊕10; the embedding is primitive.

3. If γ = 1, and 8 - n− 1, 8 - d, then Λ# = U⊕2 ⊕ A1(−1)⊕8; the embedding is primitive.

18



3.3 HYPERKÄHLER MANIFOLDS OF OG10 TYPE

4. If γ = 2, and 4 - n− 1, 4 - d, then Λ# = U⊕2 ⊕ E8(−1); the embedding is primitive.

5. If γ = 2, and 4 | n − 1, 4 | d, then Λ# = U⊕2 ⊕ A1(−1)⊕10. If Λh,s is the saturation,
then [Λh,s : Λh] = 2.

Proof. Since Mon2 (Λ, h) ⊂ Ô+ (Λ, h), it is enough to show the extendability of the latter.
The proof is similar to the proof of Lemma 3.3, so we leave it to the reader.

We are ready to prove our main result for hyperkähler manifolds of Kumn-type.

Theorem 3.9. There exists a constant C > 0 such that for any n, d, γ and for any irreducible
component Y ⊂Mγ

Kumn,2d
, it holds that

irr(Y ) ≤ C · (n · d)11.

Furthermore, for every ε > 0, there exists a constant Cε > 0 such that the above bound can
be refined in each case as follows:

1. If γ ≥ 3, then irr(Y ) ≤ C · (n · d)8. If furthermore γ, 2d
γ
, 2(n+1)

γ
are coprime, then

irr(Y ) ≤ Cε · (n · d)6+ε.

2. If γ = 1, then irr(Y ) ≤ Cε · (n · d)7+ε. If furthermore 8 - n + 1, 8 - d, then irr(Y ) ≤
Cε · (n · d)6+ε.

3. If γ = 2 and 4 - n+ 1, 4 - d, then irr(Y ) ≤ C · (n · d)8.

Proof. The proof uses Lemma 3.8 and is similar to the proof of Theorem 3.4. The only
difference is the factor [Õ+(Λh) : Mon2(Λ, h) ∩ Õ+(Λh)]. In the current case, Mon2(Λ, h) is

a subgroup of index at most two in Ô+(Λ, h), so that Mon2(Λ, h) ∩ Õ+(Λh) is a subgroup

of index at most two in Ô+(Λ, h) ∩ Õ+(Λh) = Õ+(Λh), where last equality follows from
Lemma 3.7.

Remark 3.10. Although [GHS10, Proposition 3.2], used in the proof of Theorem 3.4, is
stated for the K3[n]-lattice, it applies equally in the Kumn case by replacing n − 1 with
n+ 1, since it can be interpreted as a statement about the rank two lattice Qh(−1) and its
discriminant group.

3.3 Hyperkähler manifolds of OG10 type Now consider hyperkähler manifolds X
deformation equivalent to O’Grady’s ten-dimensional example [O’G99]. Then H2(X,Z) is
isomorphic to the lattice Λ = ΛOG10 := U⊕3 ⊕ E8(−1)⊕2 ⊕ A2(−1); see [Rap08]. Note that
this is an even lattice of signature (3, 21). The monodromy group Mon2(Λ) coincides with

the group Ô+(Λ) = O+(Λ); see [Ono22b]. If h ∈ Λ is a class with positive square 2d, then
its divisibility can only be γ = 1 or γ = 3. In this setting, the lattice Λh is of the form

Λh
∼= U⊕2 ⊕ E8(−1)⊕2 ⊕Qh(−1)

where Qh(−1) is a certain negative definite lattice of rank 3. Note that the lattice Λh has
signature (2, 21) and discriminant | disc(Λh)| = 6d

γ2 . The relevant monodromy group can be
described explicitly as follows.
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3.3 HYPERKÄHLER MANIFOLDS OF OG10 TYPE

Lemma 3.11. Consider the subgroup Mon2(Λ, h) ⊂ O+(Λh).

1. If γ = 3, then Mon2(Λ, h) = Õ+(Λh). In this case, there exists a primitive embedding
of Λh into Λ# = U⊕2 ⊕ E8(−1)⊕3 such that Mon2(Λ, h) is extendable.

2. If γ = 1, then Qh(−1) ∼= A2(−1)⊕ Z` with (`, `) = −2d. In this case, the monodromy

group has the form Mon2(Λ, h) = 〈Õ+(Λh), σv〉 where σv is the reflection with respect to
any vector v ∈ A2(−1) with (v, v) = −6. Moreover, there exists a primitive embedding
of Λh into Λ# = U⊕2 ⊕ E8(−1)⊕2 ⊕ A2(−1) ⊕ A1(−1)⊕5 such that Mon2(Λ, h) is
extendable. Furthermore, if d is not divisible by 8, then A1(−1)⊕5 can be replaced
by A1(−1)⊕4.

Proof. The formulas for Mon2(Λ, h) and Qh(−1) in both cases are part of [GHS11, Theo-
rem 3.1] and the proof of [GHS11, Lemma 4.4]. Let us find the lattice Λ# and prove the
extendability case-by-case.

1. Suppose that γ = 3. First note that Qh(−1) has signature (0, 3), so it can be embedded
as a primitive sublattice of E8(−1) (see [Huy16, Theorem 14.1.15]). This induces a

primitive embedding Λh ↪→ Λ# = U⊕2 ⊕ E8(−1)⊕3. Because Mon2(Λ, h) = Õ+(Λh) in
this case, it is extendable for every such embedding.

2. Suppose that γ = 1. Using Lagrange’s four square theorem, we can write d = a2
1 +

a2
2 + a2

3 + a2
4 + 1 for some integers a1, . . . , a4. This induces a primitive embedding of

Z` into A1(−1)⊕5 which maps a generator to (a1, . . . , a4, 1). This defines a primitive
embedding of Qh(−1) into A2(−1) ⊕ A1(−1)⊕5, thus induces a primitive embedding
of Λh into Λ# = U⊕2 ⊕ E8(−1)⊕2 ⊕ A2(−1) ⊕ A1(−1)⊕5. We fix a basis {δ1, δ2} for
A2(−1) and choose v = δ1− δ2 (see proof of [GHS11, Lemma 4.4]). We regard v as an
element in Λ# and consider the corresponding reflection σ̃v ∈ O (Λ# ⊗Q):

σ̃v : x 7→ x− 2
(x, v)

(v, v)
v.

Note that (v, v) = −6 and for any x ∈ Λ#, (x, v) is divisible by 3. Then σ̃v is
integral, that is, σ̃v ∈ O+ (Λ#), and restricts to σv on Λh. If furthermore 8 - d, then
[CH07, Theorem 1] shows that d is the sum of 4 coprime squares so that there is a
primitive embedding of Z` into A1(−1)⊕4.

LetMγ
OG10, 2d be the moduli space of hyperkähler manifolds of type OG10 with a primitive

polarization of degree 2d and divisibility γ. For both γ = 1 and 3, this moduli space is
irreducible; see [Ono22a,Ono22b] or [Son23, Proposition 3.4]. In the non-split (γ = 3) case,
Mγ

OG10, 2d is non-empty if and only if 2d ≡ 12 mod 18, cf. [GHS11, Lemma 3.4]. Moreover,
all moduli spacesMγ

OG10, 2d are of general type with finitely many exceptions [GHS11,BBBF].
We can now get a polynomial bound on their degrees of irrationality.
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Theorem 3.12. For any ε > 0, there exists a constant Cε > 0 independent of γ, d such that

irr
(
Mγ

OG10, 2d

)
≤ Cε · d14+ε.

Moreover if γ = 1 the bound can be refined to irr
(
M1

OG10, 2d

)
≤ Cε · d

27
2

+ε for all d and to

irr
(
M1

OG10, 2d

)
≤ Cε · d13+ε for all d not divisible by 8.

Proof. One uses Lemma 3.11, proceeding as in the proof of Theorem 3.4, in the case n = 2
or γ ≥ 3. The only different step here is the estimate of |O(D(Λh))|. We need to prove that
for any ε > 0, there exists C ′ε > 0 such that |O(D(Λh))| < C ′ε · dε.

If γ = 3, then 2d = 18t − 6 for some integer t. The discriminant group D (Λh) ∼=
D (Qh(−1)) is cyclic of order 2d/3, see [GHS11, Theorem 3.1]. Further, in this case, Qh(−1)
is given by

Qh(−1) =

−2 1 0
1 −2 −1
0 −1 −2t

 ,

see [BBBF, Section 8]. Let {δ1, δ2, δ3} be a basis for Qh(−1) and r = 2d/3. Then δ1+2δ2−3δ3

has divisibility r, and α = δ1+2δ2−3δ3
r

+ Λh is a generator for D (Qh(−1)). An element
g ∈ O(D(Λh)) is given by α 7→ a · α, with

(α, α) ·
(
a2 − 1

)
=
−9

2d
(a2 − 1) =

−3

r
(a2 − 1) ∈ Z.

Note that r ≡ −2 mod 3, in particular a2 ≡ 1 modulo r. Looking at the decomposition
r = pk1

1 · · · pkss , where pi’s are distinct primes, by the Chinese remainder theorem, we see that
the number of solutions to x2 ≡ 1 modulo r is bounded by 2ρ(r), where ρ(r) is the number of
distinct prime factors of r. Hence, there are at most 2ρ(r) ≤ 2ρ(2d) ≤ 2ρ(d)+1 possible values
for a modulo r. Then we proceed as in the proof of Theorem 3.4.

If instead γ = 1, then we have D(Λh) = D(Z`)⊕D(A2(−1)) where the direct sum is with
respect to the Q

/
2Z-valued quadratic form. If (`, e1, e2) is a canonical basis of Z`⊕A2(−1) ,

then D(Λh) is generated by `
2d
, 2

3
e1+ 1

3
e2 modulo Λh. An element A ∈ O(D(Λh)) is determined

by the images of the generators,

A

(
`

2d

)
= a11

(
`

2d

)
+a21

(
2

3
e1 +

1

3
e2

)
, A

(
2

3
e1 +

1

3
e2

)
= a12

(
`

2d

)
+a22

(
2

3
e1 +

1

3
e2

)
hence it can be represented by a 2 × 2 matrix A = (aij)i,j=1,2 with a1j ∈ {0, 1, . . . , 2d − 1},
and a2j ∈ {0, 1, 2}. The fact that A preserves the quadratic form implies that

At
(

1
2d

0
0 2

3

)
A ≡

(
1
2d

0
0 2

3

)
mod Z.

Which can be written down explicitly as

1

2d
a2

11 +
2

3
a2

21 ≡
1

2d
,

1

2d
a11a12 +

2

3
a21a22 ≡ 0,

1

2d
a2

12 +
2

3
a2

22 ≡
2

3
mod Z (3.11)

Suppose first that 3 - d. Then multiplying the equations of (3.11) by 6d we get

3 · a2
11 + 4d · a2

21 ≡ 3, 3 · a11a12 + 4d · a21a22 ≡ 0, 3 · a2
12 + 4d · a2

22 ≡ 4d mod 6d · Z
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Looking at the last equations modulo d and using that 3 is coprime to d, we get

a2
11 ≡ 1 and a11 · a12 ≡ 0 mod d.

In particular, a12 ≡ 0 modulo d, so it must belong to {0, d}. Again, since the number of
solutions to x2 ≡ 1 modulo d is bounded by 2ρ(d)+1, there are at most 4 · 2ρ(d) possible values
for a11 modulo 2d. Since a21, a22 can take at most three possible values, all these facts yield
|O(D(Λ))| ≤ 2 · (4 ·2ρ(d)) ·3 ·3 = 72 ·2ρ(d). If instead d = 3r, we can multiply equations (3.11)
by 6r and use a similar reasoning. As a consequence, for any ε > 0, we see that there exists
C ′ε > 0 such that |O(D(Λh))| ≤ C ′ε · dε.

3.4 Hyperkähler manifolds of OG6 type Let X be a hyperkähler manifold of dimen-
sion 2n deformation equivalent to O’Grady’s six-dimensional example [O’G03]. Then the
group H2(X,Z) is isomorphic to the lattice Λ = ΛOG6 := U⊕3 ⊕A1(−1)⊕2, which is an even
lattice of signature (3, 5). In this case, we have that (cf. [MR21])

Mon2(Λ) = O+(Λ).

Let h ∈ Λ be a primitive class with (h, h) = 2d > 0. Then its divisibility is either γ = 1
or γ = 2, and the lattice Λh has signature (2, 5) and discriminant | disc(Λh)| = 8d

γ2 . We will

denote the standard bases of the first two copies of U by {e, f} and {e1, f1} and the canonical
basis of A1(−1)⊕2 by {v1, v2}.
Lemma 3.13. Up to the action of Mon2(Λ), the class h and the orthogonal complement Λh

have the following form:

1. If γ = 1, then h = e+ df and Λh = U⊕2 ⊕ 〈e− df〉 ⊕ A1(−1)⊕2.

2. If γ = 2, then h = 2(e+ tf)−w for some w ∈ {v1, v2, v1 + v2} and some integer t. In
this case, we have Λh = U⊕2 ⊕Qh(−1) where

Qh(−1) = 〈f − v1, e− tf, v2〉, if w = v1,

Qh(−1) = 〈f − v2, e− tf, v1〉, if w = v2,

Qh(−1) = 〈f − v1, f − v2, e− tf〉, if w = v1 + v2.

Proof. Every element h ∈ Λ can be written as av − w with v ∈ U⊕3 primitive, and w ∈
A1(−1)⊕2. Since h is primitive, by Eichler’s criterion, we can assume w ∈ {0, v1, v2, v1 + v2}.
If γ = 1, then w = 0 and a = 1. Then, using Eichler’s criterion as in the proof of Lemma 3.5,
h can be taken as e+ df .

If γ = 2, then w ∈ {v1, v2, v1 + v2}. Further, 2 divides a and since Λ is even, (v, v) ∈ 2Z.
Then

2d = (h, h) = a2(v, v) + (w,w) = 8t+ (w,w),

for a certain integer t. Then

d =

{
4t− 2 if w = v1 + v2,

4t− 1 if w ∈ {v1, v2}.

Using Eichler’s criterion again, we can take h = 2(e+ tf)− w with w ∈ {v1, v2, v1 + v2} for
γ = 2. Based on this, the lattice Λh can be computed explicitly.
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The following lemma is here for the sake of completeness, cf. [BBFW24, Lemma 7.1].

Lemma 3.14. The group Mon2 (Λ, h) is at most a degree two extension of Õ+ (Λ, h). More
concretely,

Mon2 (Λ, h) =
〈

Õ+ (Λ, h) , σ
〉
,

where σ is the identity if w ∈ {v1, v2}, and σ = σκ ∈ O+ (Λ, h) is the reflection along
κ = v1 − v2 if γ = 1 or γ = 2 and w = v1 + v2.

Proof. Since Λ is indefinite of rank 8, the map O (Λ) −→ O (D (Λ)) is surjective, see [Nik80,

Theorem 1.14.2]. Further, D (Λ) ∼=
(
Z
/

2Z
)⊕2

is generated by {v1

2
, v2

2
}. One notes that if

g ∈ O (D (Λ)), then g = Id or g : v1

2
7→ v2

2
, v2

2
7→ v1

2
. In particular[

O+ (Λ, h) : Õ+ (Λ, h)
]
≤ 2.

One can check that σκ ∈ O+ (Λ, h) fixes h and does not act as the identity on D(Λ). Assume
γ = 1, and κ = v1 − v2. Since h ∈ (v1 − v2)⊥, see Lemma 3.13, then σk(h) = h, that is,
σk ∈ O+ (Λ, h). Further,

σk

(v1

2

)
=
v1

2
− 2

(
v1

2
, κ
)

(κ, κ)
κ =

v2

2
.

In particular σk 6∈ Õ+ (Λ, h). The case γ = 2 and w = v1 + v2 is analogous. Finally, assume
γ = 2 and w = v1. Let g ∈ O+ (Λ, h). Then g(h) = h and g

(
h
2

)
= h

2
. In particular, from

Lemma 3.13 we have g
(
h
2

)
= g(e + tf) − g

(
v1

2

)
= (e + tf) − v1

2
which implies g

(
v1

2

)
≡ v1

2

mod Λ. Therefore, there is no element in O+ (Λ) fixing h and acting as v1

2
7→ v2

2
on the

discriminant of Λ. In particular, every such g acts as the identity on D(Λ). This shows the

equality O+ (Λ, h) = Õ+ (Λ, h). The argument is the same if w = v2.

Lemma 3.15. We have the equality Õ+(Λ, h) = Õ+(Λh).

Proof. The inclusion Õ+(Λh) ⊂ Õ+(Λ, h) follows from Lemma 2.3. To prove the converse,
let us first show that, if x ∈ Λ∨h , then x ∈ Q · h+ Λ∨; since Λh ⊂ Λ∨, it suffices to check this
for those x ∈ Λ∨h whose classes generate D(Λh). Let us proceed case-by-case:

1. Assume first that γ = 1. Then in the notation of Lemma 3.13 one can compute that

D(Λh) =

〈
1

2d
(e− df),

1

2
v1,

1

2
v2

〉
Observe that 1

2
v1,

1
2
v2 ∈ Λ∨ and 1

2d
(e− df) = 1

2d
(e+ df)− f = 1

2d
h− f with f ∈ Λ.

2. Assume now that γ = 2. Due to Lemma 3.13, we can assume h = 2(e + tf)− ω with
ω ∈ {v1, v2, v1 + v2}. If ω = v1, then one can verify using the same lemma that

D(Λh) = D(Qh(−1)) =

〈
1

2d
h− 1

2
v1,

1

d
h− f, 1

2
v2

〉
=

〈
1

2d
h− 1

2
v1,

1

2
v2

〉
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where the third equality comes from the relation 1
d
h − f = 2

(
1
2d
h− 1

2
v1

)
− (f − v1)

and the fact that f − v1 ∈ Qh(−1). Observe that the generators are all contained in
Q · h + Λ∨. The case ω = v2 can be solved in a similar way. If instead ω = v1 + v2,
then one can verify that

D(Λh) = D(Qh(−1)) =

〈
1

2d
h− 1

2
v1,

1

2d
h− 1

2
v2,

1

d
h− f

〉
=

〈
1

2d
h− 1

2
v1,

1

2d
h− 1

2
v2

〉
.

Observe that these generators are contained in Q · h+ Λ∨.

This completes the proof for the inclusion Λ∨h ⊂ Q·h+Λ∨. Now, pick any g ∈ O(Λ, h)∩Õ+(Λ)
and x ∈ Λ∨h . Then x ∈ Q · h + Λ∨, which allows us to write x = α · h + y with α ∈ Q and
y ∈ Λ∨. It follows that

g(x)− x = g(α · h) + g(y)− α · h− y = g(y)− y ∈ Λ.

We also have

(g(x)− x, h) = (g(x), h)− (x, h) = (x, g−1(h))− (x, h) = (x, h)− (x, h) = 0.

These two relations imply that g(x)− x ∈ Λh. Hence g ∈ Õ+(Λh). This finishes the proof of

the equality Õ+(Λh) = O(Λ, h) ∩ Õ+(Λ).

As a consequence we have the following extendability result:

Corollary 3.16. In all cases listed in Lemma 3.13 there is a primitive embedding Λh ↪→ Λ#

such that the group Mon2 (Λ, h) extends.

1. If γ = 1, then Λ# = U⊕2⊕A1(−1)⊕7 and if d is not divisible by 8, then A1(−1)⊕7 can
be replaced by A1(−1)⊕6.

2. If γ = 2 and w ∈ {v1, v2}, then Λ# = U⊕2 ⊕ E8(−1).

3. If γ = 2 and w = v1 + v2, then Λ# = U⊕2 ⊕ A3(−1)⊕ A1(−1)⊕4.

Proof. By Lemmas 3.14 and 3.15 it suffices to show that σκ extends to Λ# is all cases. We
proceed case-by-case:

1. By Lemma 3.13, Λh = U⊕2⊕ 〈e− df〉 ⊕A1(−1)⊕2 and, as in the proof of Lemma 3.11,
Lagrange’s four square theorem induces a primitive embedding of 〈e−df〉 in A1(−1)⊕5

(resp. A1(−1)⊕4 if d is not divisible by 8). This gives us an embedding

Λh = U⊕2 ⊕ 〈e− df〉 ⊕ A1(−1)⊕2 ↪→ U⊕2 ⊕ A1(−1)⊕5 ⊕ A1(−1)⊕2.

Further, note that if we see κ as an element in Λ# and we call σ̃κ ∈ O+ (Λ# ⊗Q) the
corresponding reflection

σ̃κ : v 7→ v − 2
(v, κ)

(κ, κ)
κ, (3.12)
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then since (κ, κ) = −4 and (v, κ) is divisible by two for all v ∈ Λ#, the reflection is
integral, that is, σ̃κ ∈ O+ (Λ#). Since σ̃κ |Λh= σκ this shows extendability in the first
case.

2. Note that `(Λh) ≤ 3, see the proof of Lemma 3.15. This fact, together with [Huy16,
Theorem 14.1.15], shows that in this case there exists a primitive embedding Λh ↪→
U⊕2 ⊕ E8(−1). The extendability of Mon2 (Λ, h) follows from Lemmas 3.14 and 3.15,

and from the fact that Õ+(Λh) is always extendable.

3. Let {δ1, δ2, δ3} be a basis for A3(−1) and {e1, . . . , e4} a basis of A1(−1)⊕4. By La-
grange’s four square theorem there are integers a1, . . . , a4 such that t−2 = a2

1 + . . .+a2
4.

In particular, there is a primitive embedding Qh(−1) ↪→ A3(−1)⊕A1(−1)⊕4 given by

f − v1 7→ δ1, f − v2 7→ δ3, e− tf 7→ a1e1 + . . .+ a4e4 − δ1 − δ2 − δ3.

Further, from Lemma 3.14, κ ∈ Λh ⊂ Λ# is given by κ = δ3 − δ1. One notes that
(κ, κ) = −4 and (v, κ) is even for all v ∈ Λ#. In particular the reflection (3.12) is
integral and restricts to σκ on Λk. This shows extendability in the third case.

Let Mγ
OG6, 2d be the moduli space of hyperkähler manifolds of type OG6 and polarized

by a primitive ample class of degree 2d and divisibility γ. By [Son23, Propositions 3.4 and
3.6], the spaceMγ

OG6, 2d is irreducible. Moreover, the proof of Lemma 3.13 shows that if the
moduli space is non-empty, then either γ = 1, or γ = 2 and d ≡ 2, 3 mod 4.

Theorem 3.17. For any ε > 0, there exists Cε > 0 independent of d and γ such that

irr
(
Mγ

OG6, 2d

)
≤ Cε · d6+ε.

If instead γ = 1 or γ = 2 and d ≡ 3 mod 4, the bound can be refined to

irr
(
Mγ

OG6, 2d

)
≤ Cε · d

11
2

+ε.

Finally, if γ = 1 and d is not divisible by 8, the bound can be further refined to

irr
(
Mγ

OG6, 2d

)
≤ Cε · d5+ε.

Proof. The proof uses Corollary 3.16 and is analogous to the proof of Theorem 3.4. The
only difference is the estimate of |O(D(Λh))|. We want to prove that for any ε > 0 there
exists C ′ε > 0 such that |O(D(Λh))| ≤ C ′ε · dε.

In the case γ = 1 we can use the description of D(Λh) given in the proof of Lemma 3.15,
and then proceed as in the proof of Theorem 3.12: an element A ∈ O (D (Λh)) is determined
by what it does to the generators

{
1
2d

(e− df), 1
2
v1,

1
2
v2

}
. In particular, it can be represented

by a 3× 3 matrix A = (aij) with a1j ∈ {0, 1, . . . , 2d− 1} and a2j, a3j ∈ {0, 1, 2}. Preserving
the quadratic form translates into

At

 1
2d

0 0
0 1

2
0

0 0 1
2

A ≡

 1
2d

0 0
0 1

2
0

0 0 1
2

 mod Z.
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Multiplying the resulting six equations by 2d and then reducing modulo d, one gets

a2
11 ≡ 1, a11 · a12 ≡ a11 · a13 ≡ a2

12 ≡ a12 · a13 ≡ a2
13 ≡ 0 mod d.

In particular, a12, a13 ∈ {0, d} and, since the number of solutions of x2 ≡ 1 mod d is in
O(dε), we obtain the desired bound for |O (D(Λh))| in this case.

Suppose instead that γ = 2 and d ≡ 3 mod 4. Then we can assume that h = 2(e+tf)−w
as in Lemma 3.13, with w ∈ {v1, v2}. We can then use the description of the discriminant
group given in the proof of Lemma 3.15 and reason as in the proof of Theorem 3.12.

In the last case of γ = 2 and d ≡ 2 mod 4, then we can assume that h = 2(e+ tf)− w
with w = v1 + v2. The proof of Lemma 3.15 shows that in this case

D(Λh) =

〈
1

2d
h− 1

2
v1,

1

2d
h− 1

2
v2

〉
=

〈
1

2d
h− 1

2
v1,

1

2
v2 −

1

2
v1

〉
Using this latter set of generators, we can proceed as in the proof of Theorem 3.12 and
compute that an element of O(D(Λh)) corresponds to a 2 × 2 matrix A = (aij) with a1j ∈
{0, . . . , 2d− 1} and a2j ∈ {0, 1} subject to the orthogonality condition:

At
(
d+1
2d

1
2

1
2

0

)
A ≡

(
d+1
2d

1
2

1
2

0

)
mod Z.

In particular, the entries must satisfy

a2
11 ≡ 1, a11 · a12 ≡ 0 mod d,

and we conclude as in the proof of Theorem 3.12.

4 Moduli spaces of abelian surfaces and K3 surfaces

This section consists of two parts. First, we study the irrationality of moduli spaces A(1,d) of
(1, d)-polarized abelian surfaces. Then we revisit our study in [ABL23] about the irrationality
of moduli spaces Fd of primitively polarized K3 surfaces.

4.1 Abelian surfaces of type (1, d) Our strategy in bounding the degree of irrationality
of A(1,d) starts by realizing it as a double cover of an appropriate period space using the
construction of Gritsenko and Hulek [GH98]. The construction will provide a bound for the
degree of irrationality when d is squarefree. Our main task here is to reduce the general case
to this one via a geometric argument by O’Grady [O’G89].

Let H2 be the Siegel upper-half space of 2×2 symmetric complex matrices τ with positive
definite imaginary part. Consider the usual action of the symplectic group Sp(4,Q) on H2

and the arithmetic group

Γ1,d =




Z Z Z dZ
dZ Z dZ dZ
Z Z Z dZ
Z 1

d
Z Z Z


 ∩ Sp (4,Q) .
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Then we have A(1,d) = H2/Γ1,d. Consider the Euclidean lattice L = Ze1 ⊕ . . . ⊕ Ze4 where
(ei, ei) = 1 and (ei, ej) = 0 for i 6= j. Then the space of bivectors L ∧ L forms a rank six
lattice, where the pairing (x, y) ∈ Z is defined by requiring that

x ∧ y = (x, y) · (e1 ∧ e2 ∧ e3 ∧ e4) ∈
4∧
L.

Fix wd := e1 ∧ e3 + de2 ∧ e4 ∈ L ∧ L and consider the integral paramodular group of level d

Γ̃1,d = {g ∈ GL(L) | (∧2g)(wd) = wd}.

Then the orthogonal complement Λd = (wd)
⊥ ⊂ L ∧ L has the form

Λd
∼= U⊕2 ⊕ Z` where (`, `) = 2d.

The group Γ̃1,d acts naturally on the lattice Λd via the group homomorphism

Γ̃1,d −→ O(Λd), g 7−→ (∧2g)|Λd .

It turns out that Γ1,d = I−1
d Γ̃1,dId where Id = diag(1, 1, 1, d). In particular, the group Γ1,d

acts on Λd via the homomorphism

Γ1,d −→ O(Λd), g 7−→ ∧2
(
IdgI−1

d

)
. (4.1)

It is proved in [GH98, Lemma 1.1] that the image of this map lies inside Õ (Λd). In the
case that d is squarefree, one of the key results in [GH98] asserts the existence of an index
two extension

Γ1,d ⊂ Γ+
1,d together with a map Γ+

1,d −→ Õ+ (Λd)

which induces a birational morphism from A+
(1,d)

:= H2

/
Γ+

1,d to the quotient Ω(Λd)/Õ
+(Λd).

This implies the following statement.

Proposition 4.1 ([GH98, Proposition 1.4]). Assume that d is squarefree. Then there exists
a dominant morphism of degree two

A(1,d) −→ P̃+
Λd

= Ω(Λd)
/

Õ+ (Λd) .

This allows us to bound the degree of irrationality of A(1,d) using P̃+
Λd

.

Proposition 4.2. Suppose that d is squarefree. Then, for every ε > 0, there exists a constant
Cε > 0 independent of d such that

irr
(
A(1,d)

)
≤ Cε · d4+ε.

Proof. From Proposition 4.1, we see that irr(A(1,d)) ≤ 2 irr(P̃Λd). Let us bound the latter
using Lemma 2.16. Recall that Λd

∼= U⊕2 ⊕Z(−2d). Since d is squarefree, it is not divisible
by 8, and thus can be written as a sum of four coprime squares d =

∑4
i=1 a

2
i . This induces

a primitive embedding of Λd into Λ# = U⊕2 ⊕ A1(−1)⊕4. As Õ+(Λd) is always extendable,
Lemma 2.16 shows that there exists a constant C > 0 such that

irr(P̃+
Λd

) ≤ C · |O(D(Λd))| · | disc Λd|4 = 24 · C · |O(D(Λd))| · d4.

Because D(Λd) ∼= Z/2dZ, we see that for every ε > 0, there exists a constant C ′ε > 0 such
that |O(D(Λd))| ≤ C ′ε ·dε. Putting all the inequalities together yields the desired bound.
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In order to extend this result to the general case, let us recall a geometric construction
due to O’Grady [O’G89]. Let (A,L) ∈ A(1,n2k) be an abelian surface with a polarization of

type (1, n2k). Then the natural map φL : A → A∨ = Pic0(A) satisfies KerφL ∼= (Z/n2kZ)
2

and the subgroup of n-torsion points J := KerφL[n] is isomorphic to (Z/nZ)2. Now consider
the quotient f : A → B = A/J . Then B has a natural polarization M of type (1, k) which
satisfies f ∗M = L. This yields a map

A(1,n2k) −→ A(1,k). (4.2)

Lemma 4.3. For any ε > 0, there exists a constant Cε independent of n and k such that
the degree of this map is at most Cε · (nk)4+ε.

Proof. Let φM : B −→ B∨ be the isogeny induced by M . As in the proof of [O’G89, Propo-
sition 5.1], the image H = f(KerφL) is a subgroup of B[nk] isomorphic to (Z/nkZ)2 such
that φM(H) equals the kernel of f ∗ : B∨ → A∨. In particular, since f : A→ B is the dual of
f ∗ : B∨ → A∨ = B∨/φM(H), we see that we can reconstruct A from φM and H. This shows
that the cardinality of the fiber of (4.2) over (B,M) is bounded by the number of subgroups
H ⊂ B[nk] isomorphic to (Z/nkZ)2. Since B[nk] ∼= (Z/nkZ)4, this number can be explicitly
computed: if nk is a prime power pr, then [But87, Equation (1)] and [Bir35, Theorem 8.1]
show that it equals p4r−4 · (p2 + 1) · (p2 + p + 1) ≤ C · p4r for a certain C > 1 independent
of p. If we write nk = pr11 · · · · · prss , s = ρ(nk), as a product of pairwise distinct primes,
then the Chinese Remainder Theorem implies that the number of subgroups is bounded by
Cρ(nk) · (nk)4, and Cρ(nk) = O((nk)ε) for all ε > 0.

With this we can get a universal bound. For a positive integer d factored into primes as
d = p2h1+r1

1 · · · · · p2hs+rs
s where hi ≥ 0 and ri ∈ {0, 1}, then we define

k(d) = pr11 · · · prss .

Theorem 4.4. For any ε > 0, there exists a constant Cε > 0 independent of d such that

irr(A(1,d)) ≤ Cε ·
(
d2+ε · k(d)6+ε

)
In particular, since k(d) ≤ d, a universal polynomial bound is given by

irr(A(1,d)) ≤ Cε · d8+2ε.

Proof. Applying Lemma 4.3 with n = (d/k(d))
1
2 and k = k(d), we get a map

A(1,d) −→ A(1,k(d))

whose degree is at most C ′ε · (n · k(d))4+ε = C ′ε · (d · k(d))2+ 1
2
ε. Since k(d) is squarefree,

Proposition 4.2 gives for each ε > 0 a constant C ′′ε > 0 such that

irr
(
A(1,k(d))

)
≤ C ′′ε · k(d)4+ε.

Hence, with Cε = C ′ε ·C ′′ε we see that for all ε > 0 there exists a constant Cε > 0 independent
of d such that

irr
(
A(1,d)

)
≤ Cε ·

(
d2+ 1

2
ε · k(d)6+ 3

2
ε
)
≤ Cε · d8+2ε.

This completes the proof.
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One can improve the above bound for infinitely many series of d as in the case of K3
surfaces treated in [ABL23]. One instance of this is when k(d) is fixed, e.g. when d is a
square. We can also consider quadratic series on d. Consider positive integers a, b, c ∈ Z
such that 4ac− b2 < 0. This defines a negative definite rank two lattice

Q(−1) :=

(
−2a b
b −2c

)
. (4.3)

Proposition 4.5. Assume d is a perfect square. Then for any ε > 0 there exists a constant
Cε > 0 independent of d such that

irr
(
A(1,d)

)
≤ Cε · d2+ε.

Further, fix a, b, c ∈ Z which satisfy 4ac − b2 < 0. Suppose that d is squarefree and has the
form d = aX2− bXY + cY 2. Then for any ε > 0, there exists a constant Cε = Cε(a, b, c) > 0
such that

irr
(
A(1,d)

)
≤ Cε · d2+ε.

Proof. The first bound follows from Theorem 4.4 with k(d) = 1. For the second bound, the
assumption on d implies that there exists a primitive embedding of Z(−2d) into Q(−1) and
consequently a primitive embedding of U⊕2 ⊕ Z(−2d) into U⊕2 ⊕ Q(−1). Then the proof
proceeds as in Proposition 4.2.

4.2 Revisiting the case of K3 surfaces Let F2d be the moduli space of K3 surfaces with

a primitive polarization of degree 2d. Recall that F2d is birational to P̃+
Λd

= Ω(Λd)/Õ
+(Λd)

where Λd is the lattice

Λd := U⊕2 ⊕ E8(−1)⊕2 ⊕ Z`, (`, `) = −2d.

Let Q(−1) be a negative definite lattice. Then every primitive embedding of Z(−2d) into
Q(−1) induces a primitive embedding of Λd into U⊕2⊕E8(−1)⊕2⊕Q(−1). Since the stable

orthogonal group Õ+(Λd) is extendable with respect to such an embedding, we can use
Lemma 2.16 to bound irr(F2d). The general bound [ABL23, Theorem 1.1] is obtained by
taking Q(−1) = E8(−1). The bounds [ABL23, Theorem 1.2] are obtained by choosing
Q(−1) = A2(−1) in the case of associated special cubic fourfolds, Q(−1) = A1(−1)⊕2 in the
case of associated special Gushel–Mukai fourfolds, and

Q(−1) =

(
−2 0
0 −2n

)
or

(
−2 −1
−1 −n+1

2

)
in the case of associated special hyperkähler fourfolds. We can get bounds for various series
of d by choosing suitable Q(−1).

Proposition 4.6. For any ε > 0 there exists a constant Cε > 0 such that for any d not
divisible by 8 one has

irr (F2d) ≤ Cε · d12+ε.
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If d is not congruent to 0, 4, 7 mod 8, then

irr (F2d) ≤ Cε · d
23
2

+ε.

If a, b, c are positive integers such that 4ac− b2 < 0, then

irr (F2d) ≤ Cε · d10+ε

for all d of the form d = aX2 − bXY + cY 2 with X and Y coprime.

Proof. Since d is not divisible by 8, it can be written as a sum of four coprime squares
d =

∑4
i=1 a

2
i . This induces a primitive embedding of Z(−2d) into A1(−1)⊕4 and one can get

from Lemma 2.16 the first bound. For the second bound, it follows from [HK82, Korollar
1] (see also [BBBF, Section 2]) that if d is large enough and d 6≡ 0, 4, 7 mod 8, then it can
be expressed as the sum of three coprime squares. In particular, there exists a primitive
embedding Z` ↪→ A1(−1)⊕3 which leads to the second bound using Lemma 2.16. In the last
case, we have a primitive embedding of Z(2d) into the lattice Q(−1) defined by (4.3), which
yields the desired bound from Lemma 2.16.

Remark 4.7. When a = b = 1, the condition of being able to write d in the form X2−XY +
Y 2 with gcd(X, Y ) = 1 is equivalent to the condition 2d ≡ 0, 2 mod 6 and not divisible by
4, 9 or any odd prime p ≡ 2 mod 3. This is the standard necessary and sufficient condition
for a polarized K3 surface of degree 2d to admit an associated labelled special cubic fourfold;
see [Has00] or [Has16, Theorem 23].
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