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Abstract

We give counting formulas for the number of Fourier–Mukai partners of the K3
category of a very general special cubic fourfold.

1 Introduction

The number of isomorphism classes of Fourier–Mukai partners of a very general complex
algebraic K3 surface was computed by Oguiso [Ogu02, Proposition (1.10)]. The purpose of
this paper is to establish similar counting formulas for the K3 category of a very general
special cubic fourfold.

Let X ⊆ P5 be a cubic fourfold, namely, a smooth complex cubic hypersurface. Then the
bounded derived category of coherent sheaves on X admits a semiorthogonal decomposition

Db(X) = ⟨AX ,OX ,OX(1),OX(2)⟩ .

The full triangulated subcategory AX , called the K3 category of X, is an example of a
non-commutative K3 surface in the sense of [MS19, Definition 2.31]. In contrast to its
common usage in the literature, we say two cubic fourfolds are Fourier–Mukai partners, or
FM-partners for short, if their K3 categories are equivalent. It is known that the number of
FM-partners of a cubic fourfold up to isomorphism is finite [Huy17, Theorem 1.1]. Moreover,
this number is equal to 1 if the lattice

H2,2(X,Z) := H4(X,Z) ∩H2(X,Ω2
X)

has rank 1 [Huy17, Theorem 1.5 (i)].
A cubic fourfold is called special if H2,2(X,Z) has rank at least 2, or equivalently, if there

exists a rank 2 saturated sublattice K ⊆ H2,2(X,Z) containing the square of the hyperplane
class h := c1(OX(1)). In the moduli space of cubic fourfolds, special members marked by
such a sublattice K with disc(K) = d form an irreducible divisor Cd, which is nonempty if
and only if d ≥ 8 and d ≡ 0, 2 (mod 6) [Has00, Theorem 1.0.1]. We say a special cubic
fourfold X ∈ Cd is very general if it is away from a union of countably many divisors. Note
that H2,2(X,Z) has rank exactly 2 for such an X.

To state the main theorem, let us first consider the ring Z2d of integers modulo 2d and
denote the subset of square roots of unity as(

Z×
2d

)
2
:=

{
n ∈ Z×

2d

∣∣ n2 ≡ 1 (mod 2d)
}
.
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Using the Chinese remainder theorem, one can verify that

∣∣(Z×
2d

)
2

∣∣ =

4 if d = 2a+1

2k+1 if d = 2pe11 · · · pekk
2k+2 if d = 2a+1pe11 · · · pekk

where a, k ≥ 1 and every pi is an odd prime.

Theorem 1.1. Let X ∈ Cd be a very general member and FM(X) be the set of isomorphism
classes of FM-partners of X.

• If d ̸≡ 0 (mod 3), then |FM(X)| = 1
4

∣∣(Z×
2d

)
2

∣∣ .
• If d ≡ 0 (mod 3) and d ̸≡ 0 (mod 9), then |FM(X)| = 1

8

∣∣(Z×
2d

)
2

∣∣ .
• If d ≡ 0 (mod 9) and d

18
≡ 1 (mod 3), then |FM(X)| = 1

4

∣∣(Z×
2d

)
2

∣∣ .
• If d ≡ 0 (mod 9) and d

18
≡ 2 (mod 3), then |FM(X)| = 1

2

∣∣(Z×
2d

)
2

∣∣ .
• If d ≡ 0 (mod 27), then |FM(X)| = 3

4

∣∣(Z×
2d

)
2

∣∣ .
The special case when d ̸≡ 0 (mod 9) were proved in our earlier work [FL23, Propo-

sition 2.6], where the formulas were used to help us find new examples of rational cubic
fourfolds. Because of this, we need to treat only the case when d ≡ 0 (mod 9) here. This
assumption implies that d ≡ 0 (mod 18) and we will mostly work with

d′ :=
d

18

instead of d in this paper. By the theorem, if d ≡ 0 (mod 27), then |FM(X)| = 3 · 2n for
some n ≥ 0; otherwise, |FM(X)| is a power of 2. It would be interesting to understand the
origin of the factor 3 from a geometric perspective. We remark that the case when X has
an associated K3 surface was studied previously by Pertusi [Per21, Theorem 1.1].

Our proof of the theorem is mainly based on the works of Addington–Thomas [AT14] and
Huybrechts [Huy17] as these works turn the original problem into the counting of certain
overlattices. In Section 2, we briefly review these background materials and set up necessary
notations. In Section 3, we introduce the overlattices arising naturally from FM-partners
and explain their roles in the counting problem. In Section 4, we count the number of those
overlattices and finish the proof of the main theorem.

Acknowledgements The second author was supported by the ERC Synergy Grant Hy-
perK (ID: 854361).
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MUKAI LATTICES OF THE K3 CATEGORIES

2 Mukai lattices of the K3 categories

The topological K-theory Ktop(X) of a cubic fourfold is a free abelian group equipped with
a natural integral bilinear pairing χ( · , · ). It contains the subgroup

Ktop(AX) := {κ ∈ Ktop(X) | χ([OX(i)], κ) = 0 for i = 0, 1, 2},

called the Mukai lattice of AX , and it has a polarized Hodge structure of K3 type. Indeed,
the pairing χ( · , · ) is symmetric on Ktop(AX) and so turns it into a lattice. On the other
hand, the Mukai vector defines an embedding

Ktop(X) ↪−→ H∗(X,Q) : E 7−→ ch(E) ·
√

td(X)

which endows a Hodge structure onKtop(AX) by taking the restriction of the Hodge structure
on H4(X,Z). By [Huy17, Theorem 1.5 (iii)] and [LPZ23, Theorem 1.3], two very general
special cubic fourfolds are FM-partners if and only if there exists a Hodge isometry between
their Mukai lattices.

Following our previous work [FL23], we define H̃(AX ,Z) := Ktop(AX)(−1). As an ab-
stract lattice, it is unimodular of signature (4, 20), so we have

H̃(AX ,Z) ∼= E8(−1)⊕2 ⊕ U⊕4 where U =

(
0 1
1 0

)
. (2.1)

Let us further define N(AX) := H̃1,1(AX ,Z) and T (AX) := N(AX)
⊥H̃(AX ,Z). The projections

of the classes [Oline(1)] and [Oline(2)] to Ktop(AX) induces two elements λ1, λ2 ∈ N(AX)
which span the sublattice

A2(X) := ⟨λ1, λ2⟩ ∼=
(

2 −1
−1 2

)
⊆ N(AX).

By [AT14, Proposition 2.3], there is a commutative diagram of Hodge structures

A2(X)⊥H̃(AX ,Z) ∼ // ⟨h2⟩⊥H
4(X,Z)(−1)

= H4(X,Z)prim(−1)

T (AX)
?�

OO

∼ // H2,2(X,Z)⊥H4(X,Z)(−1)
?�

OO

where the horizontal maps are isomorphisms.
From now on, we fix a very general X ∈ Cd with d ≡ 0 (mod 9). Let us denote for short

that T := T (AX) and S := N(AX) ∩ A2(X)⊥N(AX). Then a direct computation using the
fact that d ≡ 0 (mod 6) gives

H2,2(X,Z) ∼=
(
3 0
0 6d′

)
whence N(AX) ∼=

 2 −1 0
−1 2 0
0 0 −6d′

 .

Denote by {λ1, λ2, ℓ} the standard basis for N(AX) so that ℓ2 = −6d′. Then

S = ⟨ℓ⟩ whence S∗/S =

〈
ℓ

6d′

〉
∼= Z6d′ . (2.2)

Let us also give an explicit formula for the discriminant group of T .
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Lemma 2.1. There exists t1, t2 ∈ T with t21 = −6, t22 = 6d′, and t1t2 = 0 such that

T ∗/T =

〈
t1
3

〉
⊕
〈
t2
6d′

〉
∼= Z3 ⊕ Z6d′ .

Proof. As a result of [Nik79, Theorem 1.14.4], we can fix an isomorphism (2.1) such that the
basis elements for N(AX) are identified as

λ1 = e1 + f1, λ2 = e2 + f2 − e1, ℓ = e3 − (3d′)f3

where {ei, fi}, i = 1, 2, 3, are the standard bases for the last three copies of U . This isomor-
phism identifies T with the sublattice E8(−1)⊕2 ⊕ U ⊕ A2(−1)⊕ Z(6d′) where

A2(−1) = ⟨e1 − f1 − e2, e2 − f2⟩ and Z(6d′) = ⟨e3 + (3d′)f3⟩ .

Take t1 := e1 − f1 − 2e2 + f2 and t2 := e3 + (3d′)f3 respectively from these factors. Then a
direct computation shows that they satisfy the requirements.

3 FM-partners and two types of overlattices

Let us retain the setting from the previous section and define MS,T to be the set of even
overlattices L ⊇ S ⊕ T with disc(L) = 3 such that S, T ⊆ L are both saturated. Our goal
is to turn the original counting problem to the counting on the set MS,T . Let us start by
showing that the elements of MS,T can be divided into two types.

Using [S∗ : S] = 6d′ and [T ∗ : T ] = 18d′, one can deduce from the chain of inclusions

S ⊕ T ⊆ L ⊆ L∗ ⊆ S∗ ⊕ T ∗

that [L : S ⊕ T ] = [S∗ ⊕ T ∗ : L∗] = 6d′. Now, as S, T ⊆ L are saturated, the projections

L∗/(S ⊕ T ) −→ S∗/S ∼= Z6d′ (3.1)

L∗/(S ⊕ T ) −→ T ∗/T ∼= Z3 ⊕ Z6d′ (3.2)

are both surjective. In particular, the second map is an isomorphism as the orders of the
two groups are both 18d′. Hence, there exist integers b1 and b2 such that

L∗/(S ⊕ T ) =

〈
b1ℓ+ t1

3

〉
⊕
〈
b2ℓ+ t2
6d′

〉
(3.3)

where ℓ, t1, t2 are as in (2.2) and Lemma 2.1.
The subgroup L/(S ⊕ T ) ⊆ L∗/(S ⊕ T ) has index 3, so its image under (3.2) followed by

the projection to the factor Z6d′ is either Z2d′ or Z6d′ . We can use (3.3) to deduce an explicit
expression for L/(S ⊕ T ) in each of the two cases as follows:

(I) If the image is Z2d′ , then

L/(S ⊕ T ) =

〈
b1ℓ+ t1

3

〉
⊕

〈
b2ℓ+ t2
2d′

〉
.

In view of the surjectivity of (3.1), we may assume that

0 ≤ b1 < 3 and 0 ≤ b2 < 2d′ with gcd(b1, 3) = gcd(b2, 2d
′) = 1. (3.4)
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(II) If the image is Z6d′ , then

L/(S ⊕ T ) =

〈
kt1
3

+
b3ℓ+ t2
6d′

〉
for some 0 ≤ k < 3.

Here b3 = 2d′kb1 + b2. In view of the surjectivity of (3.1), we may assume that

0 ≤ b3 < 6d′ with gcd(b3, 6d
′) = 1. (3.5)

In order to relate the set MS,T to the set of FM-partners, let us consider the set F̃M(X)
of triples (Y, ϕ, ψ) where

• Y ∈ FM(X),

• ϕ : S −→ SY := N(AY ) ∩ A2(Y )⊥N(AY ) is an isometry of rank 1 lattices,

• ψ : T −→ TY := T (AY ) is a Hodge isometry.

Lemma 3.1. The forgetful map

F̃M(X) −→ FM(X) : (Y, ϕ, ψ) 7−→ Y

is 4-to-1. Therefore, we have |FM(X)| = 1
4
|F̃M(X)|.

Proof. For each Y ∈ FM(X), there are exactly two isometries ϕ : S −→ SY which are
different by a sign. On the other hand, there exists a Hodge isometry ψ : T −→ TY due
to [Huy17, Theorem 1.5 (iii)]. Because the only Hodge isometries on T are ±1 [Huy16,
Corollary 3.3.5], the only Hodge isometries from T to TY are ±ψ. This shows that the
preimage over Y ∈ FM(X) consists of (Y,±ϕ,±ψ), so the statement follows.

For each (Y, ϕ, ψ) ∈ F̃M(X), one can verify that the pullback

L(Y,ϕ,ψ) := (ϕ⊕ ψ)∗
(
A2(Y )⊥H̃(AY ,Z)

)
⊆ S∗ ⊕ T ∗

is an element of MS,T . This defines a map

F̃M(X) −→ MS,T : (Y, ϕ, ψ) 7−→ L(Y,ϕ,ψ). (3.6)

Due to the Torelli theorem [Voi86], if (Y, ϕ, ψ) and (Y ′, ϕ′, ψ′) have the same image under
this map, then Y ∼= Y ′. Hence, the forgetful map in Lemma 3.1 factors as

F̃M(X)

4:1
%%

L• //MS,T

��

FM(X).

This shows that every fiber of (3.6) is contained in a fiber of the forgetful map. Moreover,
the map is surjective due to the surjectivity of the period map [Laz10, Theorem 1.1]; see the
end of [FL23, Proof of Lemma 2.7] for the details.
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Lemma 3.2. The map (3.6) is 2-to-1. As a result, we have |FM(X)| = 1
2
|MS,T |.

Proof. It is easy to see that L(Y,ϕ,ψ) = L(Y,−ϕ,−ψ) for every (Y, ϕ, ψ) ∈ F̃M(X). As a conse-

quence, the fiber {(Y,±ϕ,±ψ)} ⊆ F̃M(X) over each Y ∈ FM(X) is mapped by (3.6) as the
set {L(Y,ϕ,ψ), L(Y,−ϕ,ψ)}. To prove the statement, it suffices to verify L(Y,ϕ,ψ) ̸= L(Y,−ϕ,ψ), that
is, one gets a different lattice after replacing ℓ with −ℓ.

First suppose that L := L(Y,ϕ,ψ) satisfies (I). Assume, to the contrary, that L remains the
same after replacing ℓ with −ℓ. This assumption implies that

b1ℓ+ t1
3

= ±
(
−b1ℓ+ t1

3

)
within the Z3 factor of L/(S⊕T ) ∼= Z3⊕Z2d′ , which gives 2b1

3
ℓ = 0 or 2

3
t1 = 0. Note that the

latter case does not occur. In the former case, we get b1 ≡ 0 (mod 3), but this contradicts
the fact that gcd(b1, 3) = 1.

Now suppose that L satisfies (II). Assume again to the contrary that L remains the same
after replacing ℓ with −ℓ. In this case, we get

kt1
3

+
b3ℓ+ t2
6d′

= ±
(
kt1
3

+
−b3ℓ+ t2

6d′

)
∈ L/(S ⊕ T ) ∼= Z6d′ ,

which implies b3
3d′
ℓ = 0 or 2k

3
t1 +

2
3d′
t2 = 0. The latter case does not occur. In the former

case, we get b3 ≡ 0 (mod 3d′), but this contradicts the fact that gcd(b3, 6d
′) = 1.

We have proved the first statement, which gives |F̃M(X)| = 2|MS,T |. It then follows

from Lemma 3.1 that |FM(X)| = 1
4
|F̃M(X)| = 1

2
|MS,T |.

4 Counting the number of overlattices

It remains to count the number of elements in MS,T , or more precisely, to count the number
of lattices of the forms (I) and (II) which are even. Let us start by proving a basic property
about square roots of unity.

Lemma 4.1. Let n be a positive integer. Then the number of integers 0 ≤ b < 2n which
satisfy b2 ≡ 1 (mod 4n) is equal to 1

2

∣∣(Z×
4n

)
2

∣∣ .
Proof. For each b satisfying the hypothesis, the integers b and b + 2n represent distinct
elements in

(
Z×

4n

)
2
. This proves the statement.

Let us first count even overlattices of Type (I).

Lemma 4.2. Elements in MS,T of Type (I) exist only if d′ ≡ 2 (mod 3). If this condition
holds, then there are

∣∣(Z×
4d′

)
2

∣∣ many of them.

Proof. An overlattice of Type (I) has the form

L = S + T +

〈
b1ℓ+ t1

3

〉
+

〈
b2ℓ+ t2
2d′

〉
6
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where (b1, b2) are as in (3.4). Such a lattice is even, that is, belongs to MS,T , if and only if(
b1ℓ+ t1

3

)2

= −2

3

(
b21d

′ + 1
)

∈ 2Z ⇐⇒ d′ ≡ 2 (mod 3)

and (
b2ℓ+ t2
2d′

)2

= − 3

2d′
(
b22 − 1

)
∈ 2Z ⇐⇒ b22 ≡ 1 (mod 4d′).

Note that the first equivalence follows from the condition gcd(b1, 3) = 1 in (3.4). From here,
we see that even overlattices of Type (I) exist only if d′ ≡ 2 (mod 3). In this situation, the
number of such lattices equals the number of pairs (b1, b2) which satisfy

b1 ∈ {1, 2} and 0 ≤ b2 < 2d′ with b22 ≡ 1 (mod 4d′).

By Lemma 4.1, the number of choices for b2 is equal to 1
2

∣∣(Z×
4d′

)
2

∣∣ . Since there are two

choices for b1, the number of desired (b1, b2) is equal to
∣∣(Z×

4d′

)
2

∣∣ .
Recall that an overlattice of Type (II) has the form

L = S + T +

〈
b3ℓ+ 2d′kt1 + t2

6d′

〉
where 0 ≤ k < 3 and b3 is as in (3.5). This lattice is even if and only if(

b3ℓ+ 2d′kt1 + t2
6d′

)2

= − 1

6d′
(
b23 + 4d′k2 − 1

)
∈ 2Z. (4.1)

Let us count the number of such overlattices case-by-case.

Lemma 4.3. There are 1
2

∣∣(Z×
12d′

)
2

∣∣ many elements in MS,T of Type (II) with k = 0.

Proof. When k = 0, condition (4.1) reduces to

− 1

6d′
(
b23 − 1

)
∈ 2Z ⇐⇒ b23 ≡ 1 (mod 12d′).

By Lemma 4.1, the number of choices for b3 is equal to 1
2

∣∣(Z×
12d′

)
2

∣∣ .
Now we consider the cases when k = 1, 2.

Lemma 4.4. Elements in MS,T of Type (II) with k = 1 exist only if d′ ≡ 0 (mod 3). If this
holds, then there are 1

2

∣∣(Z×
4d′

)
2

∣∣ many of them. The same statement holds for k = 2.

Proof. When k = 1 (resp. k = 2), condition (4.1) is equivalent to

b23 + 4d′ − 1 ≡ 0 (mod 12d′). (4.2)

Recall from (3.5) that gcd(b3, 6d
′) = 1, whence b23 ≡ 1 (mod 3), and the above relation

modulo 3 gives d′ ≡ 0 (mod 3). Now write

b3 = b4 + 2d′m with 0 ≤ b4 < 2d′.
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Then (3.5) holds if and only if m ∈ {0, 1, 2} and gcd(b4, 2d
′) = 1. From (4.2), we get

b23 + 4d′ − 1 ≡ b24 + 4d′(mb4 + d′m2 + 1)− 1 ≡ 0 (mod 12d′). (4.3)

This relation modulo 4d′ gives
b24 ≡ 1 (mod 4d′). (4.4)

We claim that for each such b4, whether m = 0, 1, 2 is uniquely determined. Indeed, if we
write b24 = 1 + 4d′r with r an integer, then

b24 + 4d′(mb4 + d′m2 + 1)− 1 = 4d′(r +mb4 + d′m2 + 1).

Inserting this into (4.3) with d′ ≡ 0 (mod 3) in mind reduces the relation to

r +mb4 + 1 ≡ 0 (mod 3).

Then the claim follows as b4 ̸≡ 0 (mod 3). By Lemma 4.1, the number of 0 ≤ b4 < 2d′

satisfying (4.4) is equal to 1
2

∣∣(Z×
4d′

)
2

∣∣ . This completes the proof.

Proof of Theorem 1.1. By Lemmas 4.2, 4.3, 4.4, the numbers of elements inMS,T of different
types and values of d′ can be organized into a table:

d′ ≡ 0 (mod 3) d′ ≡ 1 (mod 3) d′ ≡ 2 (mod 3)

(I) 0 0
∣∣(Z×

4d′

)
2

∣∣
(II) with k = 0 1

2

∣∣(Z×
12d′

)
2

∣∣ 1
2

∣∣(Z×
12d′

)
2

∣∣ 1
2

∣∣(Z×
12d′

)
2

∣∣
(II) with k = 1 1

2

∣∣(Z×
4d′

)
2

∣∣ 0 0

(II) with k = 2 1
2

∣∣(Z×
4d′

)
2

∣∣ 0 0

|MS,T | 3
2

∣∣(Z×
4d′

)
2

∣∣ ∣∣(Z×
4d′

)
2

∣∣ 2
∣∣(Z×

4d′

)
2

∣∣
The formulas can then be deduced from Lemma 3.2 and a direct computation.
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