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Abstract. A smooth hypersurface over a finite field Fq is called Frobenius nonclassical
if the image of every geometric point under the q-th Frobenius endomorphism remains
in the unique hyperplane tangent to the point. In this paper, we establish sharp lower
and upper bounds for the degrees of such hypersurfaces, give characterizations for those
achieving the maximal degrees, and prove in the surface case that they are Hermitian when
their degrees attain the minimum. We also prove that the set of Fq-rational points on a
Frobenius nonclassical hypersurface form a blocking set with respect to lines, which indicates
the existence of many Fq-points.
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1. Introduction

In the celebrated paper [SV86], Stöhr and Voloch used Weierstrass order-sequences to ob-
tain an upper bound on the number of rational points for curves embedded in an arbitrary
projective space over finite fields. The concept of Frobenius nonclassical curves was intro-
duced naturally in their work as those curves whose order sequence behaves differently from
“most” curves. Afterwards, Hefez and Voloch [HV90] extensively studied the properties of
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Frobenius nonclassical curves. In addition to showing that such curves are always nonre-
flexive, they also computed the precise number of Fq-points on Frobenius nonclassical plane
curves. It turns out that Frobenius nonclassical plane curves have many Fq-points. Inspired
by this observation, points on Frobenius nonclassical plane curves have been used to con-
struct new complete arcs in the field of combinatorial geometry [GPTU02,Bor09a,BMT14].

As a natural generalization of the plane curve case, our earlier work [ADL21] introduced
the concept of Frobenius nonclassical hypersurfaces, with a particular emphasis on the surface
case. We found that if a hypersurface is not Frobenius nonclassical, then it is easier to prove
a Bertini-type theorem such as the existence of a smooth hyperplane section over the ground
field [ADL21, Theorem 2.2][ADL22, Theorem 1.4]. The purpose of the present paper is to
provide a systematic study of Frobenius nonclassical hypersurfaces in arbitrary dimensions.
We extend some of the results known for plane curves such as the lower and upper bounds
on the degree to higher dimensions, and give evidences for the abundance of Fq-points on
these hypersurfaces.

Definition 1.1. Let X ⊂ Pn be a hypersurface defined by a polynomial F over the finite
field Fq. We say that X is Frobenius nonclassical if the q-th Frobenius morphism

Φ: Pn −→ Pn : [x0 : · · · : xn] 7−→ [xq0 : · · · : xqn]

maps every Fq-point P ∈ X into the embedded tangent subspace

TPX :=

{
n∑
i=0

xi

(
∂F

∂xi
(P )

)
= 0

}
⊂ Pn.

Equivalently, X is Frobenius nonclassical if F divides the polynomial

F1,0 :=
n∑
i=0

xqi
∂F

∂xi
.

Remark 1.2. One can interpret F1,0 as the directional derivative DxqF of the function F
in the direction xq = (xq0, . . . , x

q
n). The notation F1,0 is originated from our earlier work

[ADL21] where it is a special case of Fa,b =
∑

i x
qa

i (∂F/∂xi)
qb .

By definition, Fq-hyperplanes are Frobenius nonclassical over Fq. Below we present some
examples that are not hyperplanes:

Example 1.3. For n = 2m+ 1, the smooth hypersurface X ⊂ Pn defined by

F =
m∑
i=0

(
xq2ix2i+1 − x2ixq2i+1

)
is Frobenius nonclassical over Fq since F1,0 = 0. The hypersurface X has several remarkable
properties. For example, X is space-filling in the sense that X(Fq) = Pn(Fq), that is, X
passes through every Fq-point of the ambient projective space. Moreover, if H ⊂ Pn is any
two-dimensional plane defined over Fq, then either H ⊂ X or X ∩H consists of a union of
q + 1 distinct Fq-lines passing through a common point. This last property was carefully
examined in [ADL21, Example 3.4] in the special case when n = 3.

Example 1.4 (Hermitian varieties). For a square q, the hypersurface X ⊂ Pn defined by

(1.1) F =
r∑
i=0

x
√
q+1

i where 0 ≤ r ≤ n
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is Frobenius nonclassical over Fq as one can verify that F1,0 = (F )
√
q. This is an example of

a Hermitian variety defined as follows: Consider the involution x 7→ x
√
q = x on Fq. For a

scalar matrix H = (hij), let us write H = (hij). A Hermitian variety is a hypersurface in Pn
defined by a polynomial of the form

F = x ·H · xt

where x = (x0, . . . , xn) and H is a scalar matrix that satisfies H
t

= H 6= 0. In fact, every
such F is projectively equivalent to (1.1) over Fq by [BC66, Theorem 4.1].

Our first main result concerns lower bounds on the degree of a Frobenius nonclassical
hypersurface. The result below was proved in [HV90, Proposition 6] for smooth plane curves,
and in [BH17, Corollary 3.2] when the curves are geometrically irreducible.

Theorem 1.5. Let X ⊂ Pn, where n ≥ 2, be a Frobenius nonclassical hypersurface of degree
d ≥ 2 over Fq of characteristic p which is smooth at Fq-points. Then

• d ≥ p+ 1, and
• d ≥ √q + 1 provided that X is reduced.

In the case that X is a reduced curve or a smooth surface, the condition d =
√
q + 1 is

attained only if X is Hermitian.

The two lower bounds in Theorem 1.5 are sharp due to Examples 1.3 and 1.4, respec-
tively. Note that the bound d ≥ p + 1 is not redundant with respect to d ≥ √q + 1 as the
former is stronger than the latter when q = p. The reducedness for the second bound is
necessary because, if the assumption is dropped, then one can easily construct counterex-
amples using Fq-hyperplanes and p-th powers of pointless hypersurfaces; see Remark 2.5 for
concrete examples of pointless hypersurfaces. We will prove the two bounds respectively in
Theorems 2.9 and 3.10. For the last statement, the curve case is essentially established by
Borges and Homma [BH17, Corollary 3.2] as mentioned above, but we still need to treat the
case when the curve is potentially reducible; see Lemma 3.11. We treat the surface case in
Proposition 3.13. It is worth mentioning that an alternative characterization of Hermitian
surfaces via the number of rational points was proved by Homma and Kim [HK16].

Our next main result concerns upper bounds on the degree.

Theorem 1.6. Let X ⊂ Pn, where n ≥ 2, be a smooth Frobenius nonclassical hypersurface
of degree d ≥ 2 over Fq. Then d ≤ q + 2 and, in the cases d = q + 1 and d = q + 2, the
defining polynomial F has the following forms:

(1) d = q + 1 and n is odd if and only if there exists a nondegenerate skew-symmetric
matrix (Aij) with entries in Fq and zero diagonal such that

F =
n∑

i,j=0

xqiAijxj.

(2) d = q + 1 and n is even if and only if p = 2 and, up to a PGLn+1(Fq)-action,

F1,0 = xq−10 F and F = x0G+
n∑

i,j=1

xqiBijxj

where ∂G
∂x0

= 0 and (Bij)1≤i,j≤n is a nondegenerate skew-symmetric matrix with entries
in Fq and zero diagonal.

3



(3) d = q + 2 if and only if p = n = 2 and, upon rescaling F by a nonzero constant,

F = x0x1x2(x
q−1
0 + xq−11 + xq−12 ) +G(x20, x

2
1, x

2
2)

for some polynomial G.

Furthermore, condition (1) or (3) occurs if and only if F1,0 is the zero polynomial.

Example 1.3 is a special case of Theorem 1.6 (1). For concrete examples that are classified
by (2) and (3) in the theorem, one can find them in Examples 4.10 and 4.11, respectively.
As an immediate consequence of Theorems 1.5 and 1.6:

Corollary 1.7. Let X ⊂ Pn, where n ≥ 2, be a smooth Frobenius nonclassical hypersurface
of degree d over Fq of characteristic p. Then

max{p+ 1,
√
q + 1} ≤ d ≤

{
q + 1 if p is odd,

q + 2 if p = 2.

In particular, when p is odd, the hypersurface X is Frobenius nonclassical over the prime
field Fp implies that d = p+ 1 and vice versa.

Examples characterized by Theorem 1.6 (1) are multi-Frobenius nonclassical in the fol-
lowing sense: Let X = {F = 0} ⊂ Pn be such an example. If we consider X as a variety
over the quadratic extension Fq2 , then

F1,0 :=
n∑
i=0

xq
2

i

∂F

∂xi
=

n∑
i,j=0

xqiAijx
q2

j = −F q.

This shows that X is Frobenius nonclassical over not only Fq but also Fq2 . In fact, if we
pick an α ∈ Fq2 \ {0} that satisfies αq = −α, then X = {αF = 0} is a Hermitian variety
over Fq2 . The classification of multi-Frobenius nonclassical plane curves was carried out by
Borges in [Bor09b].

Notice that not every Frobenius nonclassical hypersurface is Hermitian. Example 4.11,
which belongs to Theorem 1.6 (3), provides smooth such examples in characteristic 2. For
smooth examples in arbitrary characteristics, one can consider

F =
n∑
i=0

xq
r+···+q+1
i where r ≥ 2

and view it as a polynomial over Fqr+1 . Then F1,0 =
∑n

i=0 x
qr+1+···+q
i = F q. Therefore, the

hypersurface X = {F = 0} ⊂ Pn is Frobenius nonclassical over Fqr+1 and it is clearly not
Hermitian over any ground field.

Hermitian varieties, which include examples in Theorem 1.6 (1) as discussed above, are
defined by polynomials of the form

F =
n∑
i=0

xq
′

i Li

where L0, . . . , Ln are linear polynomials and q′ is a power of the characteristic of the ground
field. Such polynomials are called Frobenius forms in [KKP+22]. In the last part of Section 3,
we show that Frobenius nonclassical hypersurfaces over Fq of degree

√
q + 1 are defined by

Frobenius forms under certain assumptions, and then prove that they must be Hermitian in
that situation. This result, together with Theorem 1.5, suggests the following conjecture:
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Conjecture 1.8. A Frobenius nonclassical hypersurface X ⊂ Pn, where n ≥ 2, over Fq of
degree

√
q + 1 is Hermitian provided that it is reduced and smooth at Fq-points.

Smooth Frobenius nonclassical hypersurfaces are nonreflexive [ADL21, Theorem 4.5], so
their degrees are either congruent to 0 or 1 modulo the characteristic of the ground field
[Kle86, page 191]. For curves, the possibility of being congruent to 0 has been excluded by
Pardini [Par86, Corollary 2.2], so it is natural to ask if the same condition holds in higher
dimensions. We prove that this is true with certain additional assumptions. To be more
concrete, we say that a hypersurface X ⊂ Pn over Fq has separated variables if, up to a
projective transformation over Fq, its defining polynomial has the form

F (x0, · · · , xn) = G(x0, . . . , xm) +H(xm+1, . . . , xn)

for some m ∈ {0, . . . , n − 1}. Frobenius nonclassical components of plane curves with
separated variables were studied by Borges in [Bor16].

Our final result establishes the congruence condition on the degree of a Frobenius non-
classical hypersurface with separated variables.

Theorem 1.9. Let X = {F = 0} ⊂ Pn be a smooth Frobenius nonclassical hypersurface of
degree d over Fq with separated variables. Then d ≡ 1 (mod p) where p = char(Fq).

Organization of the paper. The present paper is organized as follows. In Section 2, we
discuss existence and multitude of Fq-rational points, and prove the lower bound d ≥ p+ 1.
Section 3 is devoted to the proof of the lower bound d ≥ √q + 1. In the same section,
we also show that smooth Frobenius nonclassical surfaces of degree

√
q + 1 are Hermitian

and provide evidences about this phenomenon in higher dimensions. The proof of the upper
bound d ≤ q + 2 is given in Section 4 along with the classification result in the cases
d = q+ 2 and d = q+ 1. Finally, Section 5 is devoted to the study of Frobenius nonclassical
hypersurfaces with separated variables, and contains the proof of Theorem 1.9.

Throughout the paper, by saying that a hypersurface is not a p-th power, we mean its
defining polynomial is not a p-th power. In many proofs within the paper, we frequently use
the fact that an Fq-irreducible component of a Frobenius nonclassical hypersurface is still
Frobenius nonclassical, which is obvious from the geometric definition: if Φ(P ) ∈ TP (X)
for all regular points P ∈ X, then the same holds true for each component Y of X. In
addition, Frobenius nonclassicality is preserved under taking Fq-hyperplane sections, which
is a useful property when proving by induction on the dimension. We also frequently use
Euler’s formula for homogeneous polynomials, which states that

n∑
i=0

xi
∂F

∂xi
= deg(F ) · F

for every homogeneous polynomial F in variables x0, x1, ..., xn.

Acknowledgements. We would like to thank Nathan Kaplan and Felipe Voloch for their
informative comments. The first author was partially supported by an NSERC PDF award,
and by a postdoctoral research fellowship from the University of British Columbia. The
third author is supported by the ERC Synergy Grant HyperK.
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2. Rational points and the universal lower bound on degree

In this section, we prove the universal lower bound d ≥ p+1 in Theorem 1.5. One of the key
ingredients is Lemma 2.2 which asserts the existence of an Fq-rational point on a Frobenius
nonclassical hypersurface of degree d ≤ q+ 1. At the end of this section, we gather evidence
for the abundance of rational points, and in particular, establish an explicit lower bound for
the number of Fq-points in Proposition 2.12. In the case of surfaces, Proposition 2.14 gives
a refined lower bound for the number of rational points.

2.1. Existence of rational points. Here we prove that, under mild assumptions, every
Frobenius nonclassical hypersurface contains Fq-points. We first prove a Bertini-type result
for hypersurfaces that are not a p-th power.

Lemma 2.1. Let X = {F = 0} ⊂ Pn, where n ≥ 2, be a hypersurface of degree d over
Fq of characteristic p such that d ≤ q + 1 and X is not a p-th power. Then, for every
1 ≤ r ≤ n − 1, there exists a linear subspace H ⊂ Pn over Fq of dimension r such that
H 6⊂ X and the restriction F |H is not a p-th power.

Proof. By induction, it suffices to prove the statement only for the case r = n−1, that is, for
the case when H is an Fq-hyperplane. Because F is not a p-th power, there exists a system
of homogeneous coordinates {x0, . . . , xn} such that

F = xs0Gs(x1, . . . , xn) +
∑
m6=s

xm0 Gm(x1, . . . , xn)

where s 6≡ 0 (mod p) and Gs 6= 0. The hyperplanes in Pn of the form

Ha := {a1x1 + · · ·+ anxn = 0} where a = (a1, . . . , an) ∈ (Fq)n \ {0}

are parametrized by Pn−1Fq
. Thus there are qn−1

q−1 many of them. If Gs|Ha = 0 for all Ha, then

the hypersurface {Gs = 0} contains every Ha as a component, whence

deg(Gs) ≥
qn − 1

q − 1
.

But this is impossible since

deg(Gs) = d− s ≤ q <
qn − 1

q − 1

where the last inequality holds whenever n ≥ 2. This shows that there exists Ha such that
Gs|Ha 6= 0. Therefore, the coefficient of xs0 in F |Ha is nontrivial, which implies that F |Ha is
not a p-th power. �

The next result explains how to find an Fq-point on a Frobenius nonclassical hypersurface
X by looking at its intersection with a suitable Fq-line. If X contains all the Fq-lines of Pn,
then clearly X contains all Fq-points in Pn. Thus, it is natural to assume that there exists
at least one Fq-line not contained in X.

Lemma 2.2. Let X = {F = 0} ⊂ Pn be a Frobenius nonclassical hypersurface of degree
d over Fq, and let p = char(Fq). Assume that there exists an Fq-line L 6⊂ X such that the
intersection X ∩ L is not a p-th power. Then X ∩ L contains at least one Fq-point and the
intersection multiplicity at every non-Fq-point is divisible by p.
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Proof. Assume without loss of generality that the line L is given by

L = {[x : y : 0 : 0 : · · · : 0] | [x : y] ∈ P1}.
Then X ∩ L is defined by the binary form f(x, y) = F (x, y, 0, ..., 0). Note that f(x, y) 6≡ 0
because L 6⊂ X. Because X is Frobenius nonclassical,

F | xq0F0 + ...+ xqnFn where Fi :=
∂F

∂xi
,

which implies that f(x, y) divides xqfx(x, y) + yqfy(x, y). By Euler’s formula, f(x, y) also
divides xfx(x, y) + yfy(x, y). As a result,

(2.1) f(x, y) | (xq − x)fx(x, y) + (yq − y)fy(x, y).

In both cases, f(x, y) is not a p-th power, so fx(x, y) and fy(x, y) cannot be identically zero
simultaneously. Assume without loss of generality that fx(x, y) 6= 0. Note that this implies
that fx(x, 1) 6≡ 0. Substituting y = 1 into (2.1), we obtain

(2.2) f(x, 1) | (xq − x)fx(x, 1).

Suppose that α ∈ Fq \ Fq is a non-Fq-root of f(x, 1), so that f(x, 1) = (x − α)mg(x) for
some m ≥ 1 and g(α) 6= 0. Then

fx(x, 1) = m(x− α)m−1g(x) + (x− α)mg′(x) = (x− α)m−1h(x)

where h(x) = mg(x) + (x− α)g′(x). Relation (2.2) now takes the form

(x− α)mg(x) | (xq − x)(x− α)m−1h(x)

which implies that x− α divides (xq − x)h(x). If m 6≡ 0 (mod p), then h(α) = mg(α) 6= 0.
The polynomial (x− α) does not divide (xq − x) since α /∈ Fq. Hence

(x− α) | h(x) = mg(x) + (x− α)g′(x).

But this implies that (x−α) divides g(x), a contradiction. We conclude that m ≡ 0 (mod p).
This shows that every non-Fq-point in the intersection X ∩ L appears with multiplicity
divisible by p.

Let us prove that there exists an Fq-point in the intersection X ∩ L. If this is not true,
then every P ∈ X ∩ L is not defined over Fq, whence appears with multiplicity divisible by
p due to the above result. But this implies that f = F |L is a p-th power, which contradicts
the assumption that X ∩ L is not a p-th power. This completes the proof. �

Corollary 2.3. Let X ⊂ Pn be a Frobenius nonclassical hypersurface over Fq such that its
degree d 6≡ 0 (mod p) where p = char(Fq). Then X meets every Fq-line L ⊂ Pn in at least
one Fq-point.

Proof. If L ⊂ X, then the proof is done. Assume L 6⊂ X. The condition d 6≡ 0 (mod p)
implies that X ∩ L is not a p-th power. The desired result follows from Lemma 2.2. �

Corollary 2.4. Let X ⊂ Pn be a Frobenius nonclassical hypersurface of degree d over Fq
and let p = char(Fq). If d ≤ q + 1 and F is not a p-th power, then X contains at least one
Fq-point.

Proof. If X contains every Fq-line in Pn, then the conclusion is obvious. Otherwise, there
exists an Fq-line L such that X ∩ L is not a p-th power by Lemma 2.1. The result now
follows from Lemma 2.2. �
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Corollary 2.4 fails in general when d ≥ q+2. Indeed, the curves in Theorem 1.6 (3) satisfy
the hypothesis of the corollary except that d = q + 2. Those curves contain no Fq-point by
Corollary 4.9.

Remark 2.5. In Corollary 2.4, the hypothesis that F is not a p-th power is necessary
because, if this assumption is dropped, then the p-th power of any hypersurface over Fq
that contains no Fq-point would provide a counterexample. One way to construct a concrete
example of a pointless hypersurface Y = {G = 0} ⊂ Pn is via the norm polynomials [LN96,
Example 6.7] as follows. Let {α0, α1, ..., αn} be a basis for Fqn+1 over Fq. Consider the
homogeneous polynomial over Fq:

G =
n∏
i=0

(αq
i

0 x0 + · · ·+ αq
i

n xn).

For every b = (b0, b1, ..., bn) ∈ Fn+1
q , it is easy to check that G(b) = NFqn+1/Fq(b) is the usual

norm map. Hence G(b) = 0 implies b = 0. Thus, Y = {G = 0} ⊂ Pn contains no Fq-points.
Another way to construct a pointless hypersurface when n+ 1 < p is to take

G =
n∑
i=0

xq−1i

Because aq−1 = 1 for all a ∈ F∗q, it is clear that Y = {G = 0} ⊂ Pn has no Fq-points.

2.2. Proof of the lower bound d ≥ p + 1. Let us start by establishing two fundamental
lemmas. The first one provides a criterion for the geometric irreducibility of a Frobenius
nonclassical hypersurface.

Lemma 2.6. Let X = {F = 0} ⊂ Pn be a Frobenius nonclassical hypersurface over Fq
which is irreducible over Fq and contains a smooth Fq-point P ∈ X. Then X is geometrically
irreducible.

Proof. Since P is smooth, it is contained in a unique geometrically irreducible component
X ′ ⊂ X. Under the q-th Frobenius endomorphism Φ, we have P = Φ(P ) ∈ X ′ ∩ Φ(X ′).
Both X ′ and Φ(X ′) are geometrically irreducible components of X that contain P , so we
have X ′ = Φ(X ′), that is, X ′ is defined over Fq. It follows that X = X ′ as X is irreducible
over Fq. �

The next lemma gives a lower bound on the degree of a hypersurface which is almost
space-filling and contains a smooth rational point.

Lemma 2.7. Let X ⊂ Pn, where n ≥ 2, be a hypersurface over Fq that contains at least one
smooth Fq-point and satisfies #X(Fq) ≥ #Pn(Fq)− 1. Then deg(X) ≥ q + 1.

Proof. We proceed by induction on n. If n = 2, then X = C ⊂ P2 is a plane curve containing
a smooth Fq-point P ∈ C. The tangent line L = TPC is defined over Fq. We also have L 6= C
since #C(Fq) ≥ #P2(Fq)−1 > #P1(Fq). Assume that L 6⊂ C. Then L intersects C properly
in at least #P1(Fq) − 1 = q points and with multiplicity at least 2 at P . In particular, L
meets C in at least q + 1 points counted with multiplicity. Thus deg(C) ≥ q + 1.

Let us treat the case when L ⊂ C. Since #C(Fq) ≥ #P2(Fq) − 1, there is at most one
Fq-point not contained in C. Thus, we can find another Fq-line L′ 6= L which also passes
through P and satisfies L′(Fq) ⊂ C(Fq). Note that L′ 6⊂ C because C is smooth at P ∈ L∩L′.
By Bézout’s theorem, we get deg(C) ≥ #L′(Fq) = q + 1.
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Now let X ⊂ Pn be a hypersurface as in the statement with a smooth P ∈ X(Fq). There
exists an Fq-hyperplane H ⊂ Pn passing through P which intersects TPX properly. Then
Y := X ∩ H is a hypersurface in H ∼= Pn−1 over Fq that contains P as a smooth Fq-point
and satisfies #Y (Fq) ≥ #Pn−1(Fq)− 1. This implies that deg(X) = deg(Y ) ≥ q + 1 by the
induction hypothesis. �

We are now ready to establish the lower bound d ≥ p+ 1 in Theorem 1.5. The proof will
proceed by induction on the dimension of the hypersurface. The following result settles the
initial case.

Lemma 2.8. Let C ⊂ P2 be a Frobenius nonclassical curve of degree d ≥ 2 over Fq of
characteristic p which is smooth at Fq-points. Then d ≥ p+ 1.

Proof. Because C is smooth at Fq-points, it cannot contain an Fq-line with multiplicity
greater than or equal to 2. Let C ′ ⊂ C be a curve irreducible over Fq. Then C ′ is Frobenius
nonclassical over Fq. Notice that there is nothing to prove if deg(C ′) ≥ q + 1, so we can
assume deg(C ′) ≤ q. If C ′ is the p-th power of an Fq-line, then it is singular at Fq-points,
a contradiction. Hence if C ′ is a p-th power, then deg(C ′) = mp for some m ≥ 2, thus
deg(C ′) ≥ p+ 1 as desired. Assume that C ′ is not a p-th power. Then Corollary 2.4 implies
that C ′ contains an Fq-point, which is smooth by hypothesis. It follows from Lemma 2.6
that C ′ is geometrically irreducible.

The geometric irreducibility of C ′ and the fact that it is smooth at Fq-points force it to be
reduced. Therefore, C is nonreflexive by [HV90, Proposition 1]. Pick a smooth non-Fq-point
P ∈ C. The non-reflexivity implies that TPC intersects C at P with multiplicity divisible
by p. Since C ′ is Frobenius nonclassical, TPC also contains Φ(P ) 6= P where Φ is the q-th
Frobenius endomorphism. Therefore, TPC intersects C ′ in at least p+ 1 points counted with
multiplicity, which yields deg(C) ≥ deg(C ′) ≥ p+ 1. �

Theorem 2.9. Let X ⊂ Pn, where n ≥ 2, be a Frobenius nonclassical hypersurface of degree
d ≥ 2 over Fq of characteristic p which is smooth at Fq-points. Then d ≥ p+ 1.

Proof. Let us prove the statement by induction on the dimension of X. The base case is done
in Lemma 2.8. For the inductive step, let X ⊂ Pn be a Frobenius nonclassical hypersurface
smooth at Fq-points. Notice that, if X contains two Fq-linear components H1 and H2, then
X is singular along H1 ∩ H2, and this intersection contains an Fq-point, which contradicts
to our hypothesis. Therefore, X contains at most one Fq-linear component, possibly some
H0 ⊂ Pn. Let H ⊂ Pn be an Fq-hyperplane distinct from H0. Then Y := X ∩ H is
Frobenius nonclassical with dim(Y ) < dim(X). If Y is smooth at Fq-points, then the
inductive hypothesis implies that deg(X) = deg(Y ) ≥ p+ 1.

Thus, we may assume that for every H as above, the section Y = X ∩ H is singular at
some Fq-point Q, which is equivalent to asserting that H = TQY . This shows that each Fq-
hyperplane in Pn, other than possibly H0, is tangent to X at some Fq-point. Notice that the
Gauss map induced by X is well-defined at the set of Fq-points as these points are smooth.
It follows that the Gauss map is surjective at the level of Fq-points away from H0:

X(Fq) // // (Pn)∗(Fq) \ {H0} : P � // TPX.

Hence #X(Fq) ≥ #Pn(Fq)− 1. By Lemma 2.7, we get deg(X) ≥ q + 1 ≥ p+ 1. �

The following result will be used later in the proof of Proposition 2.12. We include it here
as it has the same flavor as Lemma 2.7.
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Lemma 2.10. Let X ⊂ Pn be a hypersurface over Fq which is space-filling, namely, it
satisfies X(Fq) = Pn(Fq). Then deg(X) ≥ q + 1.

Proof. We proceed by induction on n. When n = 1, the conclusion follows since a space-
filling subset X ⊂ P1 is defined by a binary form divisible by xqy − xyq. For the inductive
step, let X ⊂ Pn be a hypersurface with X(Fq) = Pn(Fq) where n ≥ 2. If X contains all the
Fq-hyperplanes in Pn, then

deg(X) ≥ #(Pn)∗(Fq) =
n∑
i=0

qi > q + 1.

Otherwise, there exists an Fq-hyperplane H ⊂ Pn such that dim(X∩H) = dim(H)−1. Now,
Y := X ∩H can be viewed as a hypersurface in H ∼= Pn−1 which is space-filling. Applying
the induction hypothesis to Y , we obtain deg(X) = deg(Y ) ≥ q + 1. �

2.3. Blocking sets and abundance of rational points. In this part, we provide evidence
for the abundance of Fq-points on Frobenius nonclassical hypersurfaces. This phenomenon
was already observed for the case of smooth plane curves by Hefez–Voloch [HV90] and later
extended to singular curves by Borges–Homma [BH17]. We will start by showing that the
configuration of Fq-points on a Frobenius nonclassical hypersurface possesses an interesting
combinatorial structure.

To state our first result in this direction, we introduce a relevant definition from finite
geometry.

Definition 2.11. Let S be a set of Fq-points in Pn. We say that S is a blocking set with
respect to lines if S ∩ L is non-empty for each Fq-line L ⊂ Pn. Such a blocking set S is
called trivial if it contains all the Fq-points on some Fq-hyperplane. Otherwise, S is called
non-trivial.

More generally, one can define the notion of a k-blocking set which is a set of Fq-points
in Pn which meets every (n − k)-dimensional space defined over Fq. The definition above
can then be viewed as the special case when k = n − 1. See [KS20, Chapter 9] for a
comprehensive account of finite geometry in higher dimensional spaces. In addition, two
recent papers [AGY22a,AGY22b] study blocking sets arising from the Fq-rational points of
plane curves over finite fields.

Proposition 2.12. Let X ⊂ Pn be a Frobenius nonclassical hypersurface over Fq, q 6= 2, of
degree d ≤ q and let p = char(Fq). Assume that d 6≡ 0 (mod p) and X contains no Fq-linear
component. Then X(Fq) is a non-trivial blocking set with respect to lines. Furthermore,

#X(Fq) ≥
qn − 1

q − 1
+
√
q · qn−2

Proof. By Corollary 2.3, every Fq-line L meets X in at least one Fq-point, so X(Fq) is a
blocking set with respect to lines. Next, let H be any Fq-hyperplane. Then Y := X ∩H is
a hypersurface of degree d ≤ q inside H ∼= Pn−1. By Lemma 2.10, we know that Y (Fq) 6=
H(Fq), which means X(Fq) does not contain all of H(Fq). This shows that X(Fq) is a non-
trivial blocking set. Finally, the lower bound on the number Fq-points is a consequence of
Heim’s theorem on blocking sets ([Hei96], see also [HT15, Theorem 9.8]). �

Proposition 2.12 fails when d ≥ q + 1 in view of Theorem 1.6. Indeed, for the examples
in (1) and (2) of the theorem, the former are space-filling, while the latter contain all the
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Fq-points on the hyperplane {x0 = 0}. Therefore, the sets of Fq-points in these two cases
form trivial blocking sets.

Next, we prove a lower bound on the number of Fq-points on a smooth Frobenius nonclas-
sical surface that depends on the degree of the surface. As preparation, we prove a lower
bound for curves.

Lemma 2.13. Let C ⊂ P2 be a reduced Frobenius nonclassical curve over Fq of degree
d ≤ q + 1 which is smooth at all of its Fq-points. Then

#C(Fq) ≥ d(q − d+ 2)

Proof. Let us write C = C1 ∪ · · · ∪ Cm where Ci, i = 1, . . . ,m are Fq-irreducible. Since
C is reduced, each Ci is not a p-th power. By Corollary 2.4 and Lemma 2.6, each Ci is
geometrically irreducible. Denoting di = deg(Ci), we know that #Ci(Fq) ≥ di(q− di + 2) by
[BH17, Corollary 1.4]. Since C is smooth at all of its Fq-points, C(Fq) is a disjoint union of
Ci(Fq) for i = 1, . . . ,m. Therefore,

#C(Fq) =
m∑
i=1

#Ci(Fq) ≥
m∑
i=1

di(q − di + 2) = dq −
m∑
i=1

d2i + 2d

≥ dq −

(
m∑
i=1

di

)2

+ 2d = d(q − d+ 2)

as claimed. �

We are now ready to establish a lower bound on the number of Fq-points for surfaces. We
will see that, when q is large, the bound is roughly

qd(q − d+ 2) ≈ O(dq2).

If the surface is not linear, then this bound grows at least at the rate O(q
5
2 ) in view of the

lower bound d ≥ √q + 1 in Theorem 1.5. This is a direct analogue of the curve case, where
the lower bound is d(q − d+ 2) ≈ O(dq).

Proposition 2.14. Suppose that X ⊂ P3 is a smooth Frobenius nonclassical surface over Fq
of degree d ≤ q + 1. Then

#X(Fq) ≥
(q3 + q2 + q + 1)d(q − d+ 2)

(q2 + q) + d(q − d+ 2)

Proof. Let us call an Fq-plane H “good” if X ∩H is smooth at Fq-points. Consider the set

I = {(H,P ) | H is a good plane with P ∈ (X ∩H)(Fq)} .

The number of good planes is at least

#(P3)∗(Fq)−#X(Fq) = (q3 + q2 + q + 1)−#X(Fq).

For each good plane H, we observe that #(X ∩H)(Fq) ≥ d(q−d+ 2) by Lemma 2.13. Here,
we are using the fact that a plane section of a smooth surface is a reduced curve (which is a
consequence of Zak’s theorem [Zak93, Corollary I.2.8]). Thus, we get a lower bound

#I ≥ (q3 + q2 + q + 1−#X(Fq)) · d(q − d+ 2).

11



On the other hand, each Fq-point of X is contained in at most q2 + q good planes. This is
because there are q2 + q + 1 planes over Fq passing through such a point and one of them is
the tangent plane. This gives us an upper bound,

#I ≤ #X(Fq) · (q2 + q).

Combining the lower and the upper bounds, we obtain,

(q3 + q2 + q + 1−#X(Fq)) · d(q − d+ 2) ≤ #X(Fq) · (q2 + q).

Rearranging this inequality, we get

#X(Fq) ≥
(q3 + q2 + q + 1)d(q − d+ 2)

(q2 + q) + d(q − d+ 2)
.

as desired. �

Remark 2.15. In [HK13, Theorem 1.2], Homma and Kim proved an upper bound for the
number of rational points on a hypersurface without an Fq-linear component. According to
[Tir17, Theorem 1 (1) and (2)], this upper bound is achieved by examples in Theorem 1.6 (1)
and surface examples of degree

√
q + 1 as in Theorem 1.5. This provides another evidence

on the abundance of rational points on Frobenius nonclassical hypersurfaces.

3. Lower bounds on degree and Hermitian surfaces

In this section, we finish the proof of Theorem 1.5. For the lower bound d ≥ √q+1, we will
present a proof by contradiction, and therefore, will assume the existence of a hypersurface
X ⊂ Pn as in the hypothesis except that d ≤ √q. Our strategy consists of two steps:

I. We first find a 2-plane H ⊂ Pn such that X ∩H contains a curve component C over
Fq that is reduced of degree at least 2 and smooth at Fq-points.

II. Then we prove that there exists a curve C ′ ⊂ C over Fq of degree at least 2 that
is geometrically irreducible. The curve C ′ is Frobenius nonclassical by construction.
Hence deg(C ′) ≥ √q+1 by [BH17, Corollary 3.2], contradicting our assumption that
d ≤ √q.

For the last statement in the theorem, the curve case is done in [BH17, Corollary 3.2], so we
will prove the assertion in the surface case. In the end of this section, we include a discussion
on the Hermiticity in higher dimensions.

3.1. Linear sections that are smooth at Fq-points. Here we prove several Bertini-type
results for reduced hypersurfaces over Fq that are smooth at Fq-points, which will be used
to establish Step I. in our strategy.

Lemma 3.1. Let X ⊂ Pn where n ≥ 4 be a reduced hypersurface over Fq of degree d ≤ q
2

on
which every Fq-point is smooth. Then there exists an Fq-hyperplane H such that X ∩ H is
reduced of dimension n− 2 and smooth at Fq-points.

Proof. Our strategy is to show that the number of Fq-hyperplanes in Pn is greater than the
number of Fq-hyperplanes H that satisfy at least one of the following bad conditions:

• X ∩H is not reduced.
• X ∩H is not of dimension n− 2.
• X ∩H is singular at some Fq-point.
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By [ADL22, Proposition 4.6], the number of Fq-hyperplanes H such that X ∩ H is not
reduced or does not have dimension n− 2 is at most

d(d− 1)(q + 1)2 + 1.

On the other hand, X ∩H is singular at an Fq-point P ∈ X implies that H = TPX, so the
number of hyperplanes H for which X ∩H is singular at some Fq-point is at most #X(Fq),
the total number of Fq-points on X. It was proved independently by Serre [Ser91] and
Sorensen [Sør94] that

#X(Fq) ≤ dqn−1 + qn−2 + · · ·+ q + 1.

Thus, the number of bad hyperplanes is at most the sum of these contributions:(
dqn−1 + qn−2 + · · ·+ q + 1

)
+ d(d− 1)(q + 1)2 + 1.

Because the total number of Fq-hyperplanes in Pn is
∑n

i=0 q
i, the result follows if we can

prove the following inequality:
n∑
i=0

qi >
(
dqn−1 + qn−2 + · · ·+ q + 1

)
+ d(d− 1)(q + 1)2 + 1

which is equivalent to

qn > (d− 1)qn−1 + d(d− 1)(q + 1)2 + 1.(3.1)

Using the assumptions that d ≤ q
2

and n ≥ 4, we get

(d− 1)qn−1 + d(d− 1)(q + 1)2 + 1 ≤
(q

2
− 1
)
qn−1 +

q

2

(q
2
− 1
)

(q + 1)2 + 1

=
qn

2
− qn−1 +

q4

4
− 3q2

4
− q

2
+ 1 < qn.

The last inequality can be proved by computing directly that the real function

f(x) = xn −
(
xn

2
− xn−1 +

x4

4
− 3x2

4
− x

2
+ 1

)
where n ≥ 4

satisfies f(x) > 0 for all x ≥ 2. This proves inequality (3.1) and establishes the existence of
an Fq-hyperplane satisfying the desired conditions. �

Lemma 3.2. Let X ⊂ P3 be a reduced surface of degree d over Fq such that 2 ≤ d ≤ √q and
every Fq-point on X is smooth. Then there exists an Fq-plane H such that X ∩H contains
a curve component C over Fq of degree ≥ 2 that is reduced and smooth at Fq-points.

Proof. The proof is similar to the proof of Lemma 3.1. The only difference is that we need to
apply a refined bound on the number of Fq-points on X by Homma and Kim [HK13]. The
theorem [HK13, Theorem 1.2] in the case of surfaces states that

#X(Fq) ≤ (d− 1)q2 + dq + 1(3.2)

provided that X has no Fq-linear component. Because X is smooth at Fq-points, it has at
most one Fq-plane as a component. Thus, we proceed according to two cases.

Assume that X has no Fq-plane component. In this case, we can directly apply (3.2). As
in the proof of Lemma 3.1, the number of bad planes defined over Fq is at most

#X(Fq) + d(d− 1)(q + 1)2 + 1 ≤ (d− 1)q2 + dq + 1 + d(d− 1)(q + 1)2 + 1
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The conclusion will follow if we can show that the total number of Fq-planes exceeds the
number of bad planes. Thus, it suffices to show that:

q3 + q2 + q + 1 > (d− 1)q2 + dq + 1 + d(d− 1)(q + 1)2 + 1(3.3)

whenever d ≤ √q. The right hand side of the inequality increases as d increases, so it suffices
to establish the inequality (3.3) in the case d =

√
q. In other words, it suffices to prove the

inequality

q3 + q2 + q + 1 > (
√
q − 1)q2 +

√
q · q + 1 +

√
q(
√
q − 1)(q + 1)2 + 1.

This inequality can be directly checked for each q ≥ 2. This justifies (3.3) and furnishes
an Fq-plane H such that C = H ∩X is a reduced curve of degree d ≥ 2 that is smooth at
Fq-points.

Now assume that X has exactly one Fq-plane component. Note that if d = 2, then
X is a union of two Fq-planes and thus contains singular Fq-points, which contradicts our
hypothesis. Hence d ≥ 3 in this case. Write X = Y ∪ H0 where H0 is an Fq-plane. Since
Y has no Fq-plane component and Y is also Frobenius nonclassical, we can apply the same
argument as in the previous case to Y . Note that inequality (3.3) still holds in this case as
deg(Y ) = deg(X) − 1 <

√
q. Thus, we obtain an Fq-plane H such that C = H ∩ Y is a

reduced curve of degree d− 1 ≥ 2 that is smooth at Fq-points. �

Corollary 3.3. Let X ⊂ Pn, where n ≥ 3, be a reduced hypersurface over Fq of degree d
such that 2 ≤ d ≤ √q and every Fq-point on X is smooth. Then there exists an Fq-plane H
such that X ∩ H contains a curve component C over Fq of degree ≥ 2 that is reduced and
smooth at Fq-points.

Proof. The assumption 2 ≤ √q is equivalent to
√
q ≤ q

2
, so we can apply Lemma 3.1

repeatedly until getting a linear subspace H ′ ∼= P3 over Fq such that X ∩ H ′ is a reduced
surface that is smooth at Fq-points. By Lemma 3.2, there exists a plane H ⊂ H ′ over Fq
such that X ∩H satisfies the desired property. �

3.2. Existence of transverse lines to plane curves. As an intermediate step, we es-
tablish a few results that guarantee the existence of a transverse Fq-line to a reduced plane
curve with smooth Fq-points under the assumption that d ≤ √q.

Lemma 3.4. Let C ⊂ P2 be a reduced and geometrically irreducible curve of degree d over
Fq that is smooth at Fq-points. Then the number of Fq-lines not transverse to C is at most

1

2
(d− 1)(d− 2) + d(d− 1)q + 1.

Proof. A line L is not transverse to the curve C if and only if it passes through a singular
point of C or is the tangent line at a smooth point of C. We will compute an upper bound
for the number of Fq-lines in each of the two categories.

By [Liu02, §7.5, Proposition 5.4], the number of singular points of a geometrically irre-
ducible curve is at most 1

2
(d − 1)(d − 2). By hypothesis, each singular point of C is not

defined over Fq. Thus, each singular point has at most one Fq-line passing through it, and
this gives a total contribution of

(3.4)
1

2
(d− 1)(d− 2)

many non-transverse Fq-lines passing through a singular point of C.
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To estimate the number of tangent Fq-lines to C, note that the dual curve C∗ has degree
at most d(d− 1). It follows that

(3.5) #{Fq-lines tangent to C} ≤ #C∗(Fq) ≤ deg(C∗)q + 1 ≤ d(d− 1)q + 1

where the second inequality follows by applying the Serre–Sørensen bound to C∗. (The
bound says that #E(Fq) ≤ δq + 1 for any plane curve E of degree δ.) Adding up (3.4) and
(3.5) gives the desired bound. �

Remark 3.5. In the proof above, we used the result #E(Fq) ≤ dq + 1 for any plane
curve E ⊂ P2. This result is a special case of the more general result for hypersurfaces
independently proved by Serre [Ser91] and Sørensen [Sør94]. However, in those papers, the
varieties are defined over Fq, whereas in our lemma, E is a plane curve defined over Fq, and
not necessarily over Fq. The result #E(Fq) ≤ dq + 1 nonetheless holds even in this more
general case. Indeed, the same proof in Sørensen [Sør94, Theorem 2.1] goes through even if
E is not defined over Fq.

Next, we generalize the previous result without the hypothesis on geometric irreducibility.

Lemma 3.6. Let C ⊂ P2 be a reduced curve of degree d over Fq on which every Fq-point is
smooth. Then the number of Fq-lines not transverse to C is at most

1

2
d2 + qd2 − qd+

1

2
d

Proof. Let us write C = C1 ∪ C2 ∪ · · · ∪ Cm where each Ci is geometrically irreducible of
degree di. Every Fq-line not transverse to C is either not transverse to some Ci (Type I)
or passes through an intersection of Ci and Cj for some i 6= j (Type II). The number of
non-transverse Fq-lines of Type I can be bounded by applying Lemma 3.4 to each Ci and
summing up the contributions:

#{Type I non-transverse Fq-lines} ≤
m∑
i=1

(
1

2
(di − 1)(di − 2) + di(di − 1)q + 1

)
.

To give an upper bound on the number of non-transverse Fq-lines of Type II, we note that
any point P ∈ Ci ∩ Cj is a singular point of C. Since C is smooth at Fq-points, P is not
defined over Fq. Thus, there can be at most one Fq-line that passes through P . Since Ci∩Cj
has at most didj distinct points by Bézout’s theorem,

#{Type II non-transverse Fq-lines} ≤
∑
i<j

didj.

Therefore, the number of Fq-lines not transverse to C is at most

m∑
i=1

(
1

2
(di − 1)(di − 2) + di(di − 1)q + 1

)
+
∑
i<j

didj

=
m∑
i=1

(
1

2
(d2i − 3di + 2) + (d2i − di)q + 1

)
+
∑
i<j

didj

=
1

2

(
m∑
i=1

d2i +
∑
i<j

2didj

)
+

m∑
i=1

qd2i −
m∑
i=1

(
q +

3

2

)
di +

m∑
i=1

2
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≤ 1

2
d2 + qd2 −

(
q +

3

2

)
d+ 2m

=
1

2
d2 + qd2 − qd+

1

2
d+ (2m− 2d)

≤ 1

2
d2 + qd2 − qd+

1

2
d

where the last inequality follows from the fact that m ≤ d. �

Corollary 3.7. Let C ⊂ P2 be a reduced curve over Fq of degree d ≤ √q that is smooth at
Fq-points. Then there exists an Fq-line L transverse to C.

Proof. It suffices to show that the total number of Fq-lines in P2 exceeds the number of
Fq-lines not transverse to C. By Lemma 3.6 and the hypothesis that d ≤ √q,

#{Fq-lines not transverse to C} ≤ 1

2
d2 + qd2 −

(
q − 1

2

)
d <

1

2
d2 + qd2

≤ 1

2
(
√
q)2 + q (

√
q)2 = q2 +

q

2
< q2 + q + 1 = #{Fq-lines in P2}

as desired. �

Remark 3.8. In [ADL22, Theorem 4.2], we proved that every reduced plane curve C of
degree d in P2 admits a transverse Fq-line once q ≥ 3

2
d(d − 1). Corollary 3.7 relaxes the

bound to q ≥ d2 at the cost of the additional hypothesis that C is smooth at its Fq-points.

3.3. Proof of the lower bound d ≥ √q + 1. To establish Step II., we need one more result
concerning the existence of a smooth Fq-point and geometric irreducibility for Frobenius
nonclassical curves.

Lemma 3.9. Let C ⊂ P2 be a Frobenius nonclassical curve over Fq which is irreducible
over Fq and admits a transverse Fq-line L. Then L intersects C in Fq-points only and C is
geometrically irreducible.

Proof. Assume, to the contrary, that there exists P ∈ L ∩ C not defined over Fq. Note that
P is a smooth point as L meets C transversely. Under the q-th Frobenius endomorphism Φ,
we have Φ(P ) ∈ TPC ∩ L. As a result, both TPC and L contain the distinct points P and
Φ(P ), whence L = TPC. This shows that L is tangent to C, a contradiction. Therefore,
L intersects C in deg(C) many smooth Fq-points, which implies that C is geometrically
irreducible by Lemma 2.6. �

We are now ready to prove the lower bound d ≥ √q + 1 in Theorem 1.5.

Theorem 3.10. Let X ⊂ Pn, where n ≥ 2, be a reduced Frobenius nonclassical hypersurface
of degree d ≥ 2 over Fq of characteristic p which is smooth at Fq-points. Then d ≥ √q + 1.

Proof. Assume, to the contrary, that there exists a reduced Frobenius nonclassical hypersur-
face X ⊂ Pn of degree d where 2 ≤ d ≤ √q. By Corollary 3.3, there exists an Fq-plane H
such that X ∩H contains a curve component C over Fq that is reduced of degree ≥ 2 and
smooth at Fq-points. The smoothness at Fq-points forbids C from being a union of Fq-lines,
so there exists a curve C ′ ⊂ C of degree ≥ 2 irreducible over Fq.

Being an Fq-component of a linear section over Fq implies that C ′ is Frobenius nonclassical
as a plane curve in H ∼= P2. On the other hand, C ′ is smooth at Fq-points and we have
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deg(C ′) ≤ deg(C) ≤ deg(X) ≤ √q, so there exists an Fq-line transverse to C ′ by Corol-
lary 3.7. We conclude that C ′ is geometrically irreducible by Lemma 3.9. However, this
implies deg(C ′) ≥ √q + 1 according to [BH17, Corollary 3.2], a contradiction. �

3.4. Frobenius nonclassical surfaces of minimal degrees. It turns out that smooth
Frobenius nonclassical surfaces over Fq whose degrees attain the minimum

√
q + 1 are Her-

mitian, that is, they are projectively equivalent over Fq to the surface defined by

x
√
q+1

0 + x
√
q+1

1 + x
√
q+1

2 + x
√
q+1

3 = 0.

Our proof is built upon the curve case proved by Borges and Homma [BH17, Corollary 3.2],
which in turn relies on the characterization of Hermitian curves [HKT08, Theorem 10.47].
The main idea of our proof in the surface case is to find sufficiently many Fq-planes that cut
out Hermitian curves on the surface.

Lemma 3.11. Let C ⊂ P2 be a reduced Frobenius nonclassical curve over Fq of degree
d =
√
q + 1 which is smooth at Fq-points. Then C is Hermitian.

Proof. Write C = C1 ∪ · · · ∪ Cr where each Ci is irreducible over Fq. Note that each Ci is
Frobenius nonclassical. Furthermore, each Ci has an Fq-point Pi by Corollary 2.4, because
deg(Ci) ≤

√
q + 1 and Ci is not a p-th power as C is a reduced curve. By hypothesis, Ci is

smooth at Pi. Applying Lemma 2.6, we see that each Ci is geometrically irreducible. Observe
that C cannot be a union of Fq-lines due to our hypothesis. Hence, there exists 1 ≤ i ≤ r
such that deg(Ci) ≥ 2. By [BH17, Corollary 3.2], we obtain that deg(Ci) ≥

√
q+1 = deg(C)

and thus C = Ci is Hermitian. �

Lemma 3.12. Let X ⊂ Pn be a hypersurface of degree d over Fq that is smooth at all its
Fq-points. Then the number of Fq-hyperplanes H ⊂ Pn such that the intersection X ∩H is
proper and smooth at Fq-points is at least qn−1(q − d+ 1).

Proof. The number of Fq-hyperplanes that are tangent to X at an Fq-point or appear as
a linear component of X is bounded by #X(Fq). Using the Serre–Sørensen bound [Ser91,
Sør94],

#X(Fq) ≤ dqn−1 +
qn−1 − 1

q − 1
.

Therefore, the number of Fq-hyperplanes as in the statement is at least

qn+1 − 1

q − 1
−
(
dqn−1 +

qn−1 − 1

q − 1

)
=

(
q2 − 1

q − 1

)
qn−1 − dqn−1 = qn−1(q − d+ 1)

which gives the desired bound. �

Proposition 3.13. Suppose that X ⊂ P3 is a smooth Frobenius nonclassical surface defined
over Fq of degree d =

√
q + 1. Then X is Hermitian.

Proof. Note that X contains no Fq-linear component due to the hypothesis. Let us call an
Fq-plane H ⊂ P3 “good” if X ∩ H is smooth at Fq-points. By Lemma 3.12, X admits at
least q3 − q2√q many good planes. Let H ⊂ P3 be any good plane. Then C := X ∩ H is
a Frobenius nonclassical curve over Fq of degree

√
q + 1 that is smooth at Fq-points. As

X is smooth, C is a reduced curve by Zak’s theorem [Zak93, Corollary I.2.8]. Thus C is
Hermitian by Lemma 3.11.
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Note that q ≥ 4 since q is a square. We claim that there exist four good planes H1, H2,
H3, and H4 that are linearly independent. Indeed, if this was not true, then the number of
good planes would be at most #(P2)∗(Fq) = q2 + q+ 1, which is strictly less than q3− q2√q
for q ≥ 4, a contradiction. After a change of coordinates, we may assume Hi = {xi = 0}
for i = 0, 1, 2, 3. Let F be a defining polynomial for X. Then the fact that X ∩ {xi = 0} is
Hermitian implies that

• For each i, F |xi=0 defines a Hermitian curve in the remaining three variables.
• F does not contain any monomials involving exactly three variables.

By collecting the monomials appropriately, we can express:

(3.6) F = G+ x0x1x2x3R

where G defines a Hermitian surface and deg(R) =
√
q − 3.

Since X admits at least q3 − q2√q good planes and we have used up 4 of those planes in
the analysis above, there are still at least q3 − q2√q − 4 good planes remaining. If

W = {a0x0 + a1x1 + a2x2 + a3x3 = 0}
defines a good plane other than H1, . . . , H4, then, by imposing the relation

∑
i aixi = 0 on

equation (3.6), we deduce that
R|W = 0.

Indeed, if we write, without loss of generality, that x0 = −a−10 (a1x1 + a2x2 + a3x3), then
the term x0x1x2x3R contributes a nonzero monomial to F |W which involves xi1x

j
2x

k
3 with

i, j, k > 0. But such a term cannot appear in a polynomial defining a Hermitian curve.
Therefore, R is divisible by

∑
i aixi. Since W is an arbitrary good plane different from

H1, . . . , H4, we conclude that R is divisible by a product of distinct q3 − q2
√
q − 4 linear

forms over Fq. In particular,
√
q − 3 = deg(R) ≥ q3 − q2√q − 4.

However,
√
q − 3 < q3 − q2

√
q − 4 for q ≥ 4. This is a contradiction unless R = 0. We

conclude that F = G and thus X is a Hermitian surface. �

3.5. Evidence for the Hermiticity in higher dimensions. For most examples of Frobe-
nius nonclassical hypersurfaces that we know, their defining polynomials F satisfy the prop-
erty that F1,0 is proportional to a power of F . These include all examples in this paper
except for the ones classified by Theorem 1.6 (2), and also the curve examples in [HV90, Theo-
rem 2]. Therefore, it is reasonable to assume this condition while investigating the properties
of Frobenius nonclassical hypersurfaces. In the following, we provide evidence for Conjec-
ture 1.8 by showing that it holds in odd characteristics under this assumption. The proof
relies on the main results from [KKP+22] about F -pure thresholds.

Proposition 3.14. Let F ∈ Fq[x0, . . . , xn] be a homogeneous polynomial of degree
√
q + 1

which defines a reduced Frobenius nonclassical hypersurface that satisfies

F1,0 :=
n∑
i=0

xqi
∂F

∂xi
= cF

√
q for some c ∈ Fq \ {0}.

Then F is a Frobenius form, namely, it is defined by the expression

F =
n∑
i=0

x
√
q

i Li
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for some linear polynomials L0, . . . , Ln.

Proof. Let fpt(F ) and fpt(F1,0) denote the F -pure thresholds of F and F1,0, respectively.
First, we have fpt(F ) ≥ 1√

q
by [KKP+22, Theorem 1.1]. Next, the assumption F1,0 = cF

√
q

implies that fpt(F1,0) = 1√
q
fpt(F ) by [KKP+22, Proposition 2.2 (2)]. Moreover, we see that

fpt(F1,0) ≤ 1
q

from the definition of F1,0. Combining these relations, we obtain

1
√
q
≤ fpt(F ) =

√
q · fpt(F1,0) ≤

1
√
q

which implies that fpt(F ) = 1√
q
. Thus F is a Frobenius form by [KKP+22, Theorem 4.3]. �

Now we proceed to prove that the Frobenius form in Proposition 3.14 turns out to be
Hermitian due to the Frobenius nonclassical property. First note that a Frobenius form over
an arbitrary field k of positive characteristic p can be equivalently written as

(3.7) F =
n∑

i,j=0

xq
′

i Mijxj = xq
′ ·M · xt

where x = (x0, . . . , xn), xq
′
= (xq

′

0 , . . . , x
q′
n ), and M = (Mij) is a matrix with entries in k.

Lemma 3.15. Let F be a Frobenius form as in (3.7) over k = Fq′2. Suppose that p 6= 2 and
that F divides the polynomial

G :=
n∑
i=0

xq
′2

i

∂F

∂xi
= xq

′ ·M · (xq′
2

)t.

Then M is either

• a Hermitian matrix in the sense that M := (M q′

ij ) = M t, or

• a skew-Hermitian matrix in the sense that M := (M q′

ij ) = −M t.

Proof. Because p 6= 2, we are allowed to write M = M1 +M2 where

M1 =
1

2
(M +M

t
) and M2 =

1

2
(M −M t

).

Notice that M1 is Hermitian and M2 is skew-Hermitian. Now we have F = F1 + F2 where
F1 = xq

′ ·M1 · xt and F2 = xq
′ ·M2 · xt. One can verify directly that G = F q′

1 − F
q′

2 . This

relation, together with the fact that F q′ = F q′

1 + F q′

2 , implies

G+ F q′ = 2F q′

1 and G− F q′ = −2F q′

2 .

Because F divides G, it divides the left hand sides of the above two equations, whence it
divides both F1 and F2. Thus, there exist c1, c2 ∈ Fq such that F1 = c1F and F2 = c2F , or
equivalently, M1 = c1M and M2 = c2M . If c1 = c2 = 0, then M = 0 and there is nothing
left to prove. If c1 6= 0, then M = c−11 M1, so M is Hermitian. If c2 6= 0, then M = c−12 M2

and M is skew-Hermitian in this case. �

Corollary 3.16. Let X ⊂ Pn be a reduced Frobenius nonclassical hypersurface over Fq of
degree

√
q + 1. Assume that char(Fq) 6= 2 and F1,0 = cF

√
q for some nonzero constant c.

Then X is Hermitian.
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Proof. By Proposition 3.14, the hypersurface X is defined by a Frobenius form F . Applying
Lemma 3.15 with q′ =

√
q, we conclude that F is of the form (3.7) such that M is either

Hermitian or skew-Hermitian. If M is Hermitian, then we have the desired result. Otherwise,
we can pick c ∈ Fq that satisfies c

√
q = −c. Then cM is Hermitian. Since {cF = 0} defines

the same hypersurface X, this completes the proof. �

4. Upper bounds on degree and characterizations

This section is devoted to the proof of Theorem 1.6. We will establish the degree bounds
and give characterizations step by step, starting from the simplest case F1,0 = 0, then the
case d 6≡ 0 (mod p) where p = char(Fq), and eventually to the full generality. The main
machinery involved in the proof is the Koszul complex.

4.1. Hypersurfaces with vanishing F1,0. Let X = {F = 0} ⊂ Pn be a Frobenius non-
classical hypersurface over Fq that satisfies the vanishing condition

F1,0 =
n∑
i=0

xqi
∂F

∂xi
= 0.

Now consider the ringR := Fq[x0, . . . , xn], the sequence xq := (xq0, . . . , x
q
n), and the associated

Koszul complex

K•(x
q) : 0 //

∧n+1Rn+1 // · · · //
∧2Rn+1 δ2

// Rn+1 δ1
// R // 0.

ei
� // xqi

Here {e0, . . . , en} is the canonical basis for the free R-module Rn+1 =
⊕n

i=0Rei. In this
setting, the vanishing of F1,0 is equivalent to the condition

(4.1)
n∑
i=0

∂F

∂xi
ei ∈ ker δ1.

On the other hand, as the sequence xq = (xq0, . . . , x
q
n) is regular [Mat89, Theorem 16.1], the

complex K•(x
q) is exact at degree i for all i ≥ 1 [Mat89, Theorem 16.5 (i)]. In particular,

(4.2) H1(K•(x
q)) = ker δ1/ im δ2 = 0

The following lemma is a consequence of these relations.

Lemma 4.1. Retain the setting from above. Then

∂F

∂xj
=

n∑
i=0

xqiGij, j = 0, . . . , n,

for some Gij ∈ Fq[x0, . . . , xn] that satisfies Gji = −Gij and Gii = 0.

Proof. Relation (4.2) implies that the element (4.1) admits a preimage∑
i<j

Gijei ∧ ej ∈
2∧
Rn+1
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under the differential δ2. By setting Gij = −Gji for i > j and Gii = 0, we get

n∑
j=0

(
∂F

∂xj

)
ej = δ2

(∑
i<j

Gijei ∧ ej

)
=
∑
i<j

Gijδ2(ei ∧ ej) =
∑
i<j

Gij(x
q
i ej − x

q
jei)

=
∑
i<j

xqiGijej −
∑
j<i

xqiGjiej =
∑
i<j

xqiGijej +
∑
j<i

xqiGijej =
n∑
j=0

(
n∑
i=0

xqiGij

)
ej.

Comparing both sides of the equation gives the desired equalities. �

Corollary 4.2. Let X = {F = 0} ⊂ Pn be a Frobenius nonclassical hypersurface of degree
d over Fq of characteristic p that satisfies F1,0 = 0.

(1) If F is not a p-th power, then d ≥ q + 1.
(2) If d 6≡ 0 (mod p), then

F =
n∑

i,j=0

xqiAijxj

where Aij are polynomials that satisfy Aji = −Aij and Aii = 0.

Proof. The polynomial F is not a p-th power if and only if

∂F

∂xj
6= 0 for some j ∈ {0, . . . , n}.

This implies that some Gij in Lemma 4.1 is not the zero polynomial. Therefore, deg(Gij) =
d− 1− q ≥ 0. Thus d ≥ q + 1. This proves (1). If d 6≡ 0 (mod p), then Euler’s formula and
Lemma 4.1 imply that

F = d−1
n∑
j=0

∂F

∂xj
xj = d−1

n∑
i,j=0

xqiGijxj.

This proves (2) by setting Aij := d−1Gij. �

4.2. Restrictions imposed by smoothness. Let X = {F = 0} ⊂ Pn be a hypersurface
over Fq. with R = Fq[x0, . . . , xn] and Rn+1 =

⊕n
i=0Rei as before. The Jacobian ideal

JF =

(
∂F

∂x0
, . . . ,

∂F

∂xn

)
⊂ R

defines a Koszul complex

K•(JF ) : 0 //
∧n+1Rn+1

δn+1
// · · · δ3

//
∧2Rn+1 δ2

// Rn+1 δ1
// R // 0

ei
� // ∂F

∂xi

In this setting, the length of a maximal regular sequence in JF , that is, the depth of JF , can
be computed by [Mat89, Theorem 16.8]

(4.3) depth(JF ) = n+ 1−max{i | Hi(K•(JF )) = ker δi/ im δi+1 6= 0}.
On the other hand, R is a polynomial ring over a field and thus is Cohen–Macaulay [Eis95,
Proposition 18.9]. This implies that [Eis05, Theorem A2.38]

(4.4) depth(JF ) = codim(JF )

where codim(JF ) is the Krull codimension of the scheme {JF = 0} ⊂ Pn.

21



Lemma 4.3. Let X = {F = 0} ⊂ Pn be a smooth Frobenius nonclassical hypersurface of
degree d over Fq of characteristic p such that d 6≡ 0 (mod p). Then

xqj − d−1
(
F1,0

F

)
xj =

n∑
i=0

∂F

∂xi
βij for all j = 0, . . . , n,

where βij ∈ Fq[x0, . . . , xn] satisfy βji = −βij and βii = 0. In particular, we have d ≤ q + 1.

Proof. The assumption d 6≡ 0 (mod p) and Euler’s formula imply that the singular locus of
X coincides with {JF = 0} ⊂ Pn. Hence codim(JF ) = n+ 1 since X is smooth. Using (4.3)
and (4.4), we conclude that

max{i | Hi(K•(JF )) = ker δi/ im δi+1 6= 0} = 0.

In particular,

(4.5) H1(K•(JF )) = ker δ1/ im δ2 = 0.

Define α := d−1(F1,0/F ) ∈ Fq[x0, . . . , xn]. This is well-defined as d 6≡ 0 (mod p) and X
is Frobenius nonclassical. Rearranging the equation gives F1,0 − αdF = 0, which can be
expanded via Euler’s formula as

n∑
j=0

(xqj − αxj)
∂F

∂xj
= 0.

This equation shows that
n∑
j=0

(xqj − αxj)ej ∈ ker δ1.

By (4.5), this element admits a preimage
∑

i<j βijei ∧ ej ∈
∧2Rn+1 under δ2. By setting

βij = −βji for i > j and βii = 0, we obtain

n∑
j=0

(xqj − αxj)ej = δ2(
∑
i<j

βijei ∧ ej) =
∑
i<j

βijδ2(ei ∧ ej) =
∑
i<j

βij

(
∂F

∂xi
ej −

∂F

∂xj
ei

)

=
∑
i<j

βij
∂F

∂xi
ej −

∑
j<i

βji
∂F

∂xi
ej =

∑
i<j

βij
∂F

∂xi
ej +

∑
j<i

βij
∂F

∂xi
ej =

n∑
j=0

(
n∑
i=0

βij
∂F

∂xi

)
ej.

Comparing both sides of the equation gives the desired relations.
To prove that d ≤ q+ 1, first note that xqj − xjα = 0 implies that α = xq−1j , which cannot

hold for all 0 ≤ j ≤ n. Hence there exists j such that xqj − xjα 6= 0. Therefore,

q = deg(xqj − αxj) = deg

(
n∑
i=0

∂F

∂xi
βij

)
= d− 1 + deg(βij).

This shows that q ≥ d− 1, or equivalently, d ≤ q + 1. �

Corollary 4.4. Let X = {F = 0} ⊂ Pn be a smooth Frobenius nonclassical hypersurface
of degree d over Fq of characteristic p such that d 6≡ 0 (mod p). Assume additionally that
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F1,0 = 0. Then there is a nondegenerate skew-symmetric matrix (Aij) with entries in Fq and
zeros along the diagonal such that

F =
n∑

i,j=0

xqiAijxj.

In particular, this situation occurs only when n is odd.

Proof. Corollary 4.2 (1) and Lemma 4.3 imply that d = q+ 1. Corollary 4.2 (2) then implies
that F =

∑n
i,j=0 x

q
iAijxj where (Aij) a skew-symmetric matrix with entries in Fq and zeros

along the diagonal. The smoothness of X implies that (Aij) is nondegenerate because, if
not, then there exists a point [a0 : · · · : an] ∈ Pn(Fq) such that

∑n
i=0 aiAij = 0 for all j,

and a straightforward computation shows that this point is a singular point of X. As a
consequence, the size of (Aij) is even, so n must be odd. �

4.3. Characterization in the case of degree q + 1. Lemma 4.3 can be refined in the case
that d = q + 1 to obtain characterization for smooth Frobenius nonclassical hypersurfaces
over Fq of degree q + 1.

Proposition 4.5. Let X = {F = 0} ⊂ Pn be a smooth Frobenius nonclassical hypersurface
over Fq of degree d = q + 1 and let p = char(Fq).

(1) If n is odd, then there exists a nondegenerate skew-symmetric matrix (Aij) with en-
tries in Fq and zeros along the diagonal such that

F =
n∑

i,j=0

xqiAijxj

and vice versa. Notice that F1,0 = 0 in this case.
(2) If n is even, then p = 2 and there exists a system of coordinates {y0, . . . , yn} and a

nondegenerate skew-symmetric matrix (Bij)1≤i,j≤n with entries in Fq and zeros along
the diagonal such that

F1,0 = yq−10 F, F = y0
∂F

∂y0
+

n∑
i,j=1

yqiBijyj,
∂2F

∂y20
= 0,

and vice versa.

Proof. Define α := F1,0/F . Lemma 4.3 together with the assumption d = q + 1 implies that
there exist βij ∈ Fq satisfying βij = −βji and βii = 0 such that

(4.6) xqj − αxj =
n∑
i=0

∂F

∂xi
βij, j = 0, . . . , n.

The fact d 6≡ 0 (mod p) and the smoothness of X imply that ∂F
∂xi

, i = 0, . . . , n, are linearly
independent over Fq. On the other hand, the Fq-vector subspace

V = span{xqj − αxj | j = 0, . . . , n} ⊂ Fq[x0, . . . , xn]

has dimension either n or n + 1 by Lemma 4.6. These properties with (4.6) imply that
rank(βij) = dim(V ) which equals either n or n + 1. Because the rank of a skew-symmetric
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matrix is always even, we have

rank(βij) =

{
n+ 1 if n is odd,

n if n is even.

Assume that n is odd. Then (βij) is nondegenerate and thus admits an inverse (Aij) that
satisfies Aij = −Aji and Aii = 0 as well. Using (4.6), we obtain

∂F

∂xi
=

n∑
j=0

Aij(x
q
j − αxj), i = 0, . . . , n.

Then Euler’s formula gives

F =
n∑
i=0

xi
∂F

∂xi
=

n∑
i,j=0

xiAij(x
q
j − αxj) =

n∑
i,j=0

xiAijx
q
j − α

n∑
i,j=0

xiAijxj =
n∑

i,j=0

xiAijx
q
j .

This proves one implication of (1). The converse follows from the fact that, as explained
in the proof of Corollary 4.4, the matrix (Aij) is nondegenerate implies that n is odd. The
vanishing F1,0 = 0 can be verified directly from the formula of F .

Assume that n is even. The fact that dim(V ) = n and Lemma 4.6 imply that there exists
a system of coordinates {y0, . . . , yn} such that α = yq−10 . In particular, the first equation
in (2) holds. Recall that the property of being Frobenius nonclassical is invariant under a
change of coordinates over Fq. Therefore, we can apply Lemma 4.3 in the new coordinates,
which asserts that there exist ηij ∈ Fq satisfying ηij = −ηji and ηii = 0 such that

(4.7) yqj − y
q−1
0 yj =

n∑
i=0

∂F

∂yi
ηij, j = 0, . . . , n.

For j = 0, the above relation reduces to 0 =
∑n

i=0
∂F
∂yi
ηi0. As ∂F

∂yi
, i = 0, . . . , n, are linearly

independent over Fq, we conclude that ηi0 = −η0i = 0 for i = 0, . . . , n. It follows that
the minor (ηij)1≤i,j≤n has full rank n, and thus admits an inverse (Bij)1≤i,j≤n that satisfies
Bij = −Bji and Bii = 0. Collecting the relations in (4.7) for j = 1, . . . , n, we obtain

∂F

∂yi
=

n∑
j=1

Bij(y
q
j − y

q−1
0 yj), i = 1, . . . , n.

Applying Euler’s formula, we get

(4.8)

F − y0
∂F

∂y0
=

n∑
i=1

yi
∂F

∂yi
=

n∑
i,j=1

yiBij(y
q
j − y

q−1
0 yj)

=
n∑

i,j=1

yiBijy
q
j − y

q−1
0

n∑
i,j=1

yiBijyj =
n∑

i,j=1

yiBijy
q
j .

This proves the second equation in (2). Applying ∂
∂y0

to both sides of (4.8) gives

(4.9) y0
∂2F

∂y20
= 0 whence

∂2F

∂y20
= 0.

This proves the third equation in (2).
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Now we prove that p = 2. For the sake of simplicity, we denote

G :=
∂F

∂y0
and H :=

n∑
i,j=1

yiBijy
q
j .

Notice that H1,0 = 0. Rewrite (4.8) as F = y0G + H. Then a straightforward computation
gives

F1,0 = yq0G+ y0G1,0 +H1,0 = yq0G+ y0G1,0.

It follows that

yq0G+ y0G1,0 = F1,0 = yq−10 F = yq−10 (y0G+H) = yq0G+ yq−10 H.

Rearranging the terms and eliminating common factors to get

(4.10) G1,0 = yq−20 H.

Recall from (4.9) that ∂G
∂y0

= 0. Applying ∂
∂y0

to (4.10), the left hand side gives

∂G1,0

∂y0
=

∂

∂y0

(
n∑
i=0

yqi
∂G

∂yi

)
=

n∑
i=0

yqi
∂2G

∂y0∂yi
=

n∑
i=0

yqi
∂2G

∂yi∂y0
= 0,

while the right hand side with the fact that ∂H
∂y0

= 0 gives

∂

∂y0
(yq−20 H) = −2yq−30 H + yq−20

∂H

∂y0
= −2yq−30 H.

Hence 0 = −2yq−30 H. We have H 6= 0 since (Bij)1≤i,j≤n is nondegenerate, so p = 2. This
completes the proof of one implication in (2).

To prove the converse of (2), first note that n is odd implies that (Bij) is degenerate. In
this situation, there exists a point [0 : b1 : · · · : bn] ∈ Pn(Fq) such that

∑n
i=1 biBij = 0 for all

j, and a straightforward computation shows that this point is a singular point of X. As we
assume X to be smooth, n must be even. �

Lemma 4.6. Let α ∈ Fq[x0, . . . , xn] be a homogeneous polynomial that is either constantly
zero or nonzero of degree q − 1. Consider the Fq-vector space

V = span{xqj − αxj | j = 0, . . . , n} ⊂ Fq[x0, . . . , xn]

which is of dimension at most n + 1. Under the situation that dim(V ) ≤ n, it can only
happen that dim(V ) = n and, in this case, there exists a system of coordinates {y0, . . . , yn}
such that α = yq−10 and that {yqj − y

q−1
0 yj | j = 1, . . . , n} forms a basis for V .

Proof. The condition dim(V ) ≤ n means the polynomials xqj −αxj, j = 0, . . . , n, are linearly

dependent, so there exists (c0, . . . , cn) ∈ Fn+1
q \ {0} such that

n∑
j=0

cj(x
q
j − αxj) =

n∑
j=0

cjx
q
j − α

n∑
j=0

cjxj = 0.

Since cj = cqj for all j, rearranging the above equation gives

α
n∑
j=0

cjxj =
n∑
j=0

cjx
q
j =

n∑
j=0

cqjx
q
j =

(
n∑
j=0

cjxj

)q

.
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Eliminating common factors from both sides gives

α =

(
n∑
j=0

cjxj

)q−1

.

As (c0, . . . , cn) is a nonzero vector, we can set y0 =
∑n

j=0 cjxj and complete it to a coordinate

system {y0, . . . , yn}. Notice that α = yq−10 in this setting.
The polynomials yqi − yq−10 yi, 1 ≤ i ≤ n, cut out the set of Fq-points away from the

hyperplane {y0 = 0}, which implies that they are linearly independent over Fq. To finish
the proof, it is sufficient to show that they belong to V . Suppose that the transformation
between the coordinate systems {x0, . . . , xn} and {y0, . . . , yn} is given by

yi =
n∑
j=0

gijxj where (gij) ∈ GLn+1(Fq).

Then yqi =
∑n

j=0 gijx
q
j . Hence, for i = 1, . . . , n,

yqi − αyi =
n∑
j=0

gijx
q
j − α

n∑
j=0

gijxj =
n∑
j=0

gij(x
q
j − αxj) ∈ V.

This completes the proof. �

4.4. The upper bound d ≤ q + 2 and further characterization. Let us proceed to
study smooth Frobenius nonclassical hypersurfaces X = {F = 0} ⊂ Pn over Fq without the
assumption that deg(X) is not divisible by p = char(Fq). In order to deal with this general
situation, we work with the quotient ring R := Fq[x0, . . . , xn]/(F ) and the ideal

JF :=

(
∂F

∂x0
, . . . ,

∂F

∂xn

)
⊂ R

where the latter determines a Koszul complex

K•(JF ) : 0 //
∧(n+1)R

n+1 δn+1
// · · · δ3

//
∧2R

n+1 δ2
// R

n+1 δ1
// R // 0

ei
� // ∂F

∂xi
.

The fact that X ⊂ Pn is a hypersurface implies that R is Cohen–Macaulay. (See, for example,
[Eis95, Section 18.5].) By [Eis05, Theorem A2.38] and [Mat89, Theorem 16.8],

codim(JF ) = depth(JF ) = n+ 1−max
{
i
∣∣Hi(K•(JF )) = ker δi/ im δi+1 6= 0

}
.

The smoothness of X implies that codim(JF ) = n, so the above relation reduces to

max
{
i
∣∣Hi(K•(JF )) = ker δi/ im δi+1 6= 0

}
= 1.

In particular,

(4.11) H2(K•(JF )) = ker δ2/ Im δ3 = 0.

Lemma 4.7. Let X = {F = 0} ⊂ Pn be a smooth Frobenius nonclassical hypersurface of
degree d over Fq. Then d ≤ q + 2 and there exists

γ =
∑
i<j<k

γijkei ∧ ej ∧ ek ∈
3∧
R
n+1
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such that

xix
q
j − x

q
ixj =

n∑
k=0

γijk
∂F

∂xk
(mod F ), 0 ≤ i < j ≤ n.

Proof. Let us consider the two elements in R
n+1

x :=
n∑
i=0

xiei and x q :=
n∑
i=0

xqi ei.

Euler’s formula implies that x ∈ ker δ1. On the other hand, X is Frobenius nonclassical and
so x q ∈ ker δ1. These facts imply that

δ2(x ∧ x q) =

(
n∑
i=0

xi
∂F

∂xi

)
x q −

(
n∑
i=0

xqi
∂F

∂xi

)
x = δ1(x)x q − δ1(x q)x = 0.

That is, β := x ∧ x q ∈ ker δ2. By (4.11), there exists

γ =
∑
i<j<k

γijkei ∧ ej ∧ ek ∈
3∧
R
n+1

such that β = δ3(γ).
For the sake of simplicity, we denote Fi := ∂F

∂xi
for i = 0, . . . , n. Expanding both sides of

the relation β = δ3(γ) gives

β =
∑
i<j

(xix
q
j − x

q
ixj)ei ∧ ej =

∑
i<j<k

γijkδ3(ei ∧ ej ∧ ek)

=
∑
i<j<k

γijk (Fiej ∧ ek − Fjei ∧ ek + Fkei ∧ ej)

=
∑
i<j<k

γijkFiej ∧ ek −
∑
i<j<k

γijkFjei ∧ ek +
∑
i<j<k

γijkFkei ∧ ej

=
∑
k<i<j

γkijFkei ∧ ej −
∑
i<k<j

γikjFkei ∧ ej +
∑
i<j<k

γijkFkei ∧ ej

=
∑
k<i<j

γijkFkei ∧ ej +
∑
i<k<j

γijkFkei ∧ ej +
∑
i<j<k

γijkFkei ∧ ej

=
∑
i<j

(
n∑
k=0

γijkFk

)
ei ∧ ej.

Comparing both sides of the equality gives the desired relations

(4.12) xix
q
j − x

q
ixj =

n∑
k=0

γijkFk (mod F ), 0 ≤ i < j ≤ n.

Let us prove that d ≤ q+2. Assume, to the contrary, that d > q+2. Then the polynomial
on the left hand side of equation (4.12) has degree q + 1 ≤ d− 1 < d. This implies that the
polynomial on the right hand side has degree q + 1 as well, and the equation holds without
modulo F . The assumption d > q + 2 also implies that deg(Fk) = d − 1 > q + 1. But
this implies that the right hand side of (4.12) has degree strictly greater than q + 1, which
contradicts to our previous conclusion. Therefore, we must have d ≤ q + 2. �
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Proposition 4.8. Let X = {F = 0} ⊂ Pn, where n ≥ 2, be a smooth Frobenius nonclassical
hypersurface of degree d over Fq of characteristic p such that d = q + 2. Then p = n = 2
and, upon rescaling F by a nonzero constant, we have

∂F

∂x0
= x1x

q
2 − x

q
1x2,

∂F

∂x1
= x2x

q
0 − x

q
2x0,

∂F

∂x2
= x0x

q
1 − x

q
0x1.

In particular, we have F1,0 = 0 and

F = x0x1x2(x
q−1
0 + xq−11 + xq−12 ) +G(x20, x

2
1, x

2
2)

for some polynomial G.

Proof. First of all, if p 6= 2, then d = q + 2 ≡ 2 6≡ 0 (mod p). But this forces d ≤ q + 1 by
Lemma 4.3, a contradiction. Hence p = 2.

Let us show that n = 2. By hypothesis, deg(F ) = d = q + 2 > q + 1. This implies that
the relations from Lemma 4.7:

(4.13) xix
q
j − x

q
ixj =

n∑
k=0

γijk
∂F

∂xk

hold without modulo F and also that γijk ∈ Fq. Note that the n(n + 1)/2 polynomials
xix

q
j − xqixj for 0 ≤ i < j ≤ n are linearly independent over Fq. On the other hand, the

polynomials ∂F
∂xk

, 0 ≤ k ≤ n, span an Fq-vector subspace in Fq[x0, . . . , xn] of dimension at

most n+ 1. These facts with (4.13) imply that

n(n+ 1)

2
≤ n+ 1, or equivalently, n ≤ 2.

We have n ≥ 2 by hypothesis, so n = 2.
Equation (4.13) under the condition n = 2 gives

γ120 ·
∂F

∂x0
= x1x

q
2 − x

q
1x2, γ201 ·

∂F

∂x1
= x2x

q
0 − x

q
2x0, γ012 ·

∂F

∂x2
= x0x

q
1 − x

q
0x1.

By convention, we have γ120 = γ201 = γ012. Denote this element by c. Then c 6= 0 and
replacing F by c−1F gives the desired expressions for the partial derivatives. The vanishing
of F1,0 and the formula for F are straightforward computations using these expressions. �

Corollary 4.9. Let X = {F = 0} ⊂ Pn, where n ≥ 2, be a smooth Frobenius nonclassical
hypersurface over Fq of degree d = q + 2. Then X contains no Fq-point.

Proof. By Proposition 4.8, the partial derivatives of F vanish at every Fq-point. If X contains
any Fq-point, then the point has to be singular, which cannot happen as we assume X to be
smooth. �

4.5. Sharpness of the upper bounds. Example 1.3 shows that the upper bound in
Lemma 4.3 is sharp. In the following, we exhibit more examples of smooth Frobenius non-
classical hypersurfaces whose degrees attain the upper bounds in Lemmas 4.3 and 4.7. Then
we finish the proof of Theorem 1.6 at the end of this section.

Example 4.10. Over F4 = F2(a), where a2 + a+ 1 = 0, the plane curve X ⊂ P2 defined by

F = x
(
(a+ 1)x4 + x2y2 + x2yz + x2z2 + y4 + y2z2 + z4

)
+ y4z + yz4
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provides an example for Proposition 4.5 (2) as well as Theorem 1.6 (2). The Hessian matrix
of this example equals (

∂2F

∂xi∂xj

)
=

 0 x2z x2y
x2z 0 x3

x2y x3 0


which has a zero determinant. In general, the determinant of the Hessian matrix of a smooth
Frobenius nonclassical hypersurface X vanishes along X by [ADL21, Lemma 4.6]. But the
Hessian matrix itself may not vanish along X due to this example.

Example 4.11. Over F2, the plane curve X ⊂ P2 defined by

(x+ y + z)xyz + x2y2 + x2z2 + y2z2 + x4 + y4 + z4 = 0

provides an example for Proposition 4.8 as well as Theorem 1.6 (3). This is the Dickson–
Guralnick–Zieve curve for q = 2 [GKT19]. As another example, we have the plane curve
over F4 defined by

(x3 + y3 + z3)xyz + x2y2(x2 + y2) + y2z2(y2 + z2) + (a+ 1)x6 + y6 + az6 = 0

where a is a multiplicative generator of F∗4 that satisfies a2 + a + 1 = 0. Finally, let a be a
multiplicative generator of F∗8 satisfying a3 + a+ 1 = 0. Then the plane curve defined by

(x7 + y7 + z7)xyz + a2x10 + x6y4 + x4y6 + (a+ 1)y10 + (a2 + 1)x8z2 + x4y4z2

+ ay8z2 + x6z4 + x2y4z4 + y6z4 + x4z6 + y4z6 + (a2 + 1)x2z8 + ay2z8 + az10 = 0

provides an example over F8.

Proof of Theorem 1.6. The bound d ≤ q + 2 is a consequence of Lemma 4.7. The “only
if” parts of (1) and (2) follow respectively from Proposition 4.5 (1) and (2). The “only if”
part of (3) follows from Proposition 4.8. For the converse of (1), we have d = q + 1 directly
from the formula. The integer n is odd because, if n was even, then the matrix (Aij) would
be degenerate, and so X would be singular, which contradicts to our hypothesis that X is
smooth. The arguments for the converses of (2) and (3) are similar.

In (1) and (3), straightforward computations give F1,0 = 0. Conversely, let us assume
F1,0 = 0. Then Corollary 4.2 (1) and the fact that d ≤ q + 2 imply d = q + 1 or d = q + 2.
If d = q + 1, then we are in case (1) by Corollary 4.4. If d = q + 2, then case (3) occurs by
Proposition 4.8. �

5. Frobenius nonclassical hypersurfaces with separated variables

In this section, we prove that a smooth Frobenius nonclassical hypersurface over Fq with
separated variables has degree 1 (mod p) where p = char(Fq). Let us first show that examples
in Theorem 1.6 (3) do not have separated variables.

Lemma 5.1. Smooth Frobenius nonclassical hypersurfaces over Fq of degree d = q + 2 do
not have separated variables.

Proof. Let X = {F = 0} ⊂ P2 be such an example. Assume, to the contrary, that it has
separated variables. Then there exists a system of coordinates {x0, x1, x2}, a polynomial
H = H(x0, x1), and a constant c 6= 0 such that

(5.1) F = H(x0, x1) + cxq+2
2 .

However, this implies ∂F
∂x2

= 0, contradicting Proposition 4.8.
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Here is another proof based on (5.1) without using Proposition 4.8: Write H0 := ∂H
∂x0

and

H1 := ∂H
∂x1

. Then the fact that F1,0 = 0 implies

(5.2) H1,0 = xq0H0 + xq1H1 = 0, or equivalently, xq0H0 = xq1H1.

Hence xq0 divides H1 and xq1 divides H0. Since H0 and H1 have degree q + 1, there exist
linear forms L0 and L1 such that H0 = xq1L0 and H1 = xq0L1. Substituting these back into
(5.2), we get xq0x

q
1L0 = xq1x

q
0L1, whence L := L1 = L2. If L = 0, then H0 = H1 = 0. But this

implies that

∂F

∂x0
= H0 = 0,

∂F

∂x1
= H1 = 0, and

∂F

∂x2
= (q + 2)cxq+1

2 = 0,

contradicting the assumption that X is smooth. Assume L 6= 0. By Euler’s formula,

0 = (q + 2)H = x0H0 + x1H1 = (x0x
q
1 + x1x

q
0)L

which is a contradiction as both x0x
q
1 + x1x

q
0 and L are nonzero. �

As preparation for the proof of Theorem 1.9, let us recall an elementary fact about poly-
nomial arithmetic.

Lemma 5.2. Let k be an arbitrary field, g, h ∈ k be nonzero constants, r(t) ∈ k[t] be a
polynomial of degree m, and d be a positive integer. Suppose that

(gtd + h) · r(t) = atd+m + b

for some nonzero a, b ∈ k. Then d divides m.

Proof. Let us write r(t) =
∑m

i=0 rit
i. Then

(gtd + h) · r(t) =
m∑
i=0

grit
d+i +

m∑
i=0

hrit
i =

d+m∑
i=d

gri−dt
i +

m∑
i=0

hrit
i

=
d+m∑
i=m+1

gri−dt
i +

m∑
i=d

(gri−d + hri)t
i +

d−1∑
i=0

hrit
i.

Due to the hypothesis, all but the constant and the leading coefficients in the last expression
vanish. That is,

(5.3) r0 6= 0 and ri = 0 for 1 ≤ i ≤ d− 1,

(5.4) gri−d + hri = 0 for d ≤ i ≤ m,

(5.5) rm 6= 0 and ri−d = 0 for m+ 1 ≤ i ≤ d+m− 1.

Under the assumption that g, h 6= 0, (5.3) and (5.4) imply that ri = 0 if and only if i 6≡ 0
(mod d). Similarly, (5.4) and (5.5) imply that ri = 0 if and only if i 6≡ m (mod d). These
two statements imply that i ≡ 0 (mod d) if and only if i ≡ m (mod d) for 0 ≤ i ≤ m, which
happens only when d divides m. �

Proof of Theorem 1.9. If F1,0 = 0, then we are in case (1) or (3) of Theorem 1.6. If case (1)
occurs, then d = q + 1 ≡ 1 (mod p). On the other hand, case (3) does not occur due to
Lemma 5.1. This shows that the statement holds when F1,0 = 0.

Assume that F1,0 6= 0. By hypothesis, there exists m ∈ {0, . . . , n− 1} such that

F (x0, · · · , xn) = G(x0, . . . , xm) +H(xm+1, . . . , xn).
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Note that X is smooth implies that G and H are not constantly zero. The fact that X is
Frobenius nonclassical implies that there exists a polynomial R such that FR = F1,0, or
equivalently,

(5.6) (G+H) ·R = G1,0 +H1,0.

Let us extend Fq by formal variables u0, . . . , un to the function field k := Fq(u0, . . . , un).
Now consider the line ` ⊂ Pnk spanned by the points

[u0 : · · · : um : 0 : · · · : 0] and [0 : · · · : 0 : um+1 : · · · : un]

and express it in terms of the parametric equations with affine parameter t:

xi =

{
uit for i = 0, . . . ,m,

ui for i = m+ 1, . . . , n.

The restriction of (G+H) to ` has the form

(G+H)|` = G(u0t, . . . , umt) +H(um+1, . . . , un)

= G(u0, . . . , um)td +H(um+1, . . . , un) = gtd + h where g, h ∈ k \ {0}.

Similarly, (G1,0 + H1,0)|` = atd+q−1 + b for some a, b ∈ k. As a result, restricting (5.6) to `
gives

(gtd + h) · r(t) = atd+q−1 + b where r(t) = R|` ∈ k[t].

The assumption F1,0 6= 0 implies that r(t) 6= 0. Together with the fact that g, h 6= 0, one
can verify that a, b 6= 0. Lemma 5.2 then implies that d divides q − 1.

According to [Kle86, page 191], the fact that X is nonreflexive [ADL21, Theorem 4.5]
implies that d ≡ 0 or 1 (mod p). If d ≡ 0 (mod p), then the fact that d divides q−1 implies
that p divides 1, a contradiction. Therefore, we must have d ≡ 1 (mod p). �

References

[ADL21] Shamil Asgarli, Lian Duan, and Kuan-Wen Lai, Transverse lines to surfaces over finite fields,
Manuscripta Math. 165 (2021), no. 1-2, 135–157.

[ADL22] , Transverse linear subspaces to hypersurfaces over finite fields, arXiv e-prints (January
2022), available at https://arxiv.org/abs/2008.11306v2.

[AGY22a] Shamil Asgarli, Dragos Ghioca, and Chi Hoi Yip, Blocking sets arising from plane curves over
finite fields, arXiv e-prints (August 2022), available at https://arxiv.org/abs/2208.13299.

[AGY22b] , Most plane curves over finite fields are not blocking, arXiv e-prints (November 2022),
available at https://arxiv.org/abs/2211.08523.

[BC66] R. C. Bose and I. M. Chakravarti, Hermitian varieties in a finite projective space PG(N, q2),
Canadian J. Math. 18 (1966), 1161–1182.

[BH17] Herivelto Borges and Masaaki Homma, Points on singular Frobenius nonclassical curves, Bull.
Braz. Math. Soc. (N.S.) 48 (2017), no. 1, 93–101.

[BMT14] Herivelto Borges, Beatriz Motta, and Fernando Torres, Complete arcs arising from a generaliza-
tion of the Hermitian curve, Acta Arith. 164 (2014), no. 2, 101–118.

[Bor09a] Herivelto Borges, On complete (N, d)-arcs derived from plane curves, Finite Fields Appl. 15
(2009), no. 1, 82–96.

[Bor09b] , On multi-Frobenius non-classical plane curves, Arch. Math. (Basel) 93 (2009), no. 6,
541–553.

[Bor16] , Frobenius nonclassical components of curves with separated variables, J. Number Theory
159 (2016), 402–425.

[Eis05] David Eisenbud, The geometry of syzygies, Graduate Texts in Mathematics, vol. 229, Springer-
Verlag, New York, 2005. A second course in commutative algebra and algebraic geometry.

31

https://arxiv.org/abs/2008.11306v2
https://arxiv.org/abs/2208.13299
https://arxiv.org/abs/2211.08523


[Eis95] , Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Math-
ematics, vol. 150, Springer-Verlag, New York, 1995.
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