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Abstract. Ballico proved that a smooth projective variety X of degree d and dimension
m over a finite field of q elements admits a smooth hyperplane section if q ≥ d(d− 1)m. In
this paper, we refine this criterion for higher codimensional linear sections on smooth hy-
persurfaces and for hyperplane sections on Frobenius classical hypersurfaces. We also prove
a similar result for the existence of reduced hyperplane sections on reduced hypersurfaces.

1. Introduction

A classical theorem of Bertini asserts that a smooth projective variety X ⊂ Pn defined
over an infinite field k admits a smooth hyperplane section defined over k. By applying this
theorem repeatedly, one can obtain a linear section on X of any dimension without extending
the ground field k.

If k = Fq is a finite field, then Bertini’s theorem is no longer true in its original form as
there are only finitely many hyperplanes in Pn defined over Fq, and they could all happen to
be tangent to X. As a concrete counterexample, see [Kat99, Question 10], [Poo04, Theorem
3.1] or [Asg19a, Example 2.2]. There are two approaches to remedy this situation:

(1) Instead of intersecting X with hyperplanes, one could allow intersection with hy-
persurfaces of arbitrary degrees. This approach was taken by Poonen in [Poo04],
where he proved the existence of a hypersurface Y over the ground field such that
the intersection X ∩ Y is smooth.

(2) Bertini’s theorem is still valid if the cardinality of Fq is sufficiently large with respect
to d := deg(X). In this direction, Ballico [Bal03] proved that if

q ≥ d(d− 1)dimX ,

then there exists an hyperplane H over Fq such that X ∩ H is smooth. Applying
this result repeatedly, one can obtain a smooth linear section on X over Fq of any
dimension.

In the direction of (2), Cafure–Matera–Privitelli [CMP15, Corollary 6.6] and Matera–
Pérez–Privitelli [MPP16, Theorem 3.6] extended Ballico’s result to higher codimensional
linear sections on possibly singular complete intersections. In the case of smooth hypersur-
faces X ⊂ Pn of degree d over Fq, both results assert the existence of an r-dimensional linear
subspace L ⊂ Pn over Fq such that X ∩ L is smooth provided that

(1.1) q ≥ d(d− 1)r + fr(d)

where fr(d) is a polynomial in d of degree r with coefficients depending on r.
In this paper, we first establish a statement similar to [CMP15,MPP16] for smooth hyper-

surfaces via an independent approach. This new method allows us to construct inductively a
flag of linear subspaces that satisfy a stronger notion of transversality. Moreover, our lower
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bound for q is the same as (1.1) except that fr(d) is replaced by a constant ≤ d. In the
following, we call an r-dimensional linear subspace in Pn briefly as an r-plane.

Theorem 1.1. Let X ⊂ Pn be a smooth hypersurface of degree d defined over Fq and pick
any 0 ≤ r ≤ n− 1. Suppose that

q ≥ d(d− 1)r + βr where βr =


1 if r ≤ n− 3,

d if r = n− 2,

0 if r = n− 1.

Then there exists a sequence of linear subspaces H0 ⊂ H1 ⊂ · · · ⊂ Hr where each Hi is an
i-plane over Fq that is very transverse to X in the following sense:

• Hi is transverse to X, that is, X ∩Hi is smooth, and
• Hi is contained in a hyperplane over Fq that is transverse to X.

A transverse hyperplane is automatically very transverse, so Theorem 1.1 recovers Ballico’s
result when r = n − 1. For higher codimensions, the notion of very transversality becomes
different from the usual transversality. As a simple example, consider the conic C ⊂ P2 over
a field of characteristic 2 defined by the equation

(1.2) x2 = yz.

This is an example of a strange curve as the point [x : y : z] = [1 : 0 : 0] lies on every tangent
line of C. Notice that this point is not on C, so it represents a transverse 0-plane which is
not very transverse. More discussions on very transversality and the proof of Theorem 1.1
will be given in Section 2.

Remark 1.2. For d ≥ 3 and r ≥ 1, we can improve βr = 1 to βr = 0 for r ≤ n − 3.
Indeed, the quantity d(d− 1)r is never a prime power in this case, and hence the hypothesis
q ≥ d(d− 1)r + 1 can be relaxed to q ≥ d(d− 1)r.

Remark 1.3. When n = 3 and r = 1, we have βr = d and Theorem 1.1 implies that a
smooth surface in P3 admits a transverse Fq-line if q ≥ d(d − 1) + d = d2. This result was
proved using a different idea in our previous paper [ADL21, Theorem 3.1].

The second part of our paper focuses on a special type of hypersurfaces. Given a smooth
hypersurface X ⊂ Pn over Fq, we call X Frobenius classical if there exists a point P ∈ X
whose image under the q-th Frobenius endomorphism is outside the tangent hyperplane
TPX. Otherwise, we call X Frobenius nonclassical. Note that a hyperplane is Frobenius
nonclassical by definition. Examples of Frobenius classical hypersurfaces include reflexive
hypersurfaces [ADL21, Theorem 4.5]. We expect such a hypersurface to have a transverse
r-plane over Fq provided that q ≥ O(d r). As evidences, it is known that

• a Frobenius classical curve C ⊂ P2 of degree d over Fq admits a transverse Fq-line if
q ≥ d− 1 [Asg19b, Theorem 3.3.1].
• a Frobenius classical surface S ⊂ P3 of degree d over Fq admits a transverse Fq-line

when q ≥ cd for some constant c > 0 [ADL21, Theorem 0.1].

In Section 3, we prove this conjecture for hyperplane sections on hypersurfaces:
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Theorem 1.4. Let X ⊂ Pn be a smooth Frobenius classical hypersurface of degree d defined
over Fq. Suppose

q ≥ cd · d(d− 1)n−2 where cd =

{
1 for d = 2

(3d+ 3)(3d− 1)−1 for d ≥ 3.

Then there exists an Fq-hyperplane H ⊂ Pn such that X ∩H is smooth.

Note that cd strictly decreases in d for d ≥ 3 starting from c3 = 3/2, and cd → 1 as d→∞.
In particular, the statement of Theorem 1.4 still holds if cd is replaced by the constant 3/2.
Given a fixed ambient dimension n, this theorem improves the bound provided by Ballico’s
theorem by a factor of d− 1.

In general, a Bertini type theorem concerns the existence of linear sections that inherit
some nice properties such as smoothness, reducedness, irreducibility, and normality, from the
ambient variety. Recall that a scheme X is reduced if OX(U) contains no nonzero nilpotent
element for every open subset U ⊂ X [Har77, II, Section 3]. Because Fq is perfect, reduced-

ness over the ground field Fq and the algebraic closure Fq are equivalent. In particular, a
hypersurface X ⊂ Pn defined by a polynomial F ∈ Fq[x0, . . . , xn] is reduced provided that

the quotient ring Fq[x0, ..., xn]/(F ) contains no nonzero nilpotent element. Combining these
ingredients, we obtain the criterion: a hypersurface X = {F = 0} ⊂ Pn over Fq is reduced if

and only if in the factorization of F into irreducible polynomials over Fq

F =
m∏
i=1

Gi ∈ Fq[x0, . . . , xn]

all the factors Gi are coprime to each other.
Our third result concerns the existence of reduced hyperplane sections, and can be viewed

as Bertini’s theorem for reducedness over finite fields.

Theorem 1.5. Let X ⊂ Pn be a reduced hypersurface of degree d over Fq. Then there exists
a hyperplane H ⊂ Pn over Fq such that X ∩ H is reduced and has dimension n − 2 if q is
greater than or equal to a constant depending only on n and d as given below:

n = 2 n = 3 n ≥ 4

q ≥ 3
2
d(d− 1) d(d− 1) + 1 d

By applying this theorem repeatedly, one can deduce similar statements for higher codi-
mensional linear sections; see Corollary 4.8. Notice that, in the case n = 2, the theorem
asserts the existence of an Fq-line H in P2 meeting a reduced plane curve in its smooth locus
transversely. Theorem 1.5 will be proved in Section 4.
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2. Existence of very transverse linear subspaces

Assume that one would like to prove Theorem 1.1 for merely transverse linear subspaces
by induction on r. Then, given an (r− 1)-plane Hr−1 ⊂ Pn over Fq transverse to the smooth
hypersurface X, one needs to find an r-plane Hr ⊃ Hr−1 also transverse to X. However, such
an Hr may not exist in general in view of the strange conic (1.2). In order to remedy this
situation, we run the induction process for transverse linear subspaces that satisfy additional
properties:

Definition 2.1. Let X ⊂ Pn be a smooth hypersurface over an arbitrary field k. We say a
linear subspace H ⊂ Pn is very transverse to X if

(1) it is transverse to X, and
(2) it is contained in a hyperplane over k that is transverse to X.

Property (2) can be translated into the following equivalent form in terms of projective
duality. Consider the Gauss map

γ : X // (Pn)∗ : P � // TPX.

Let X∗ := γ(X) be the projective dual of X and H∗ ⊂ (Pn)∗ be the subspace consisting of
the hyperplanes in Pn that contain H. Then (2) is equivalent to

H∗ 6⊂ X∗.

In characteristic zero, a transverse linear subspace is automatically very transverse due to
the general version of Bertini’s theorem (see [Kle74, Corollary 5]). On the other hand, there
exist odd dimensional smooth quadrics in characteristic 2 which admit linear subspaces that
are transverse but not very transverse:

Example 2.2. Suppose that X ⊂ Pn is a smooth hypersurface of degree at least 2 over an
algebraically closed field. Then X is strange, meaning that its tangent hyperplanes contain
a common point P ∈ Pn, if and only if it is an odd dimensional quadric in characteristic 2
[KP91, Theorem 7]. In this case, one can express X as

(2.1) x2
0 +

m∑
i=1

x2i−1x2i = 0 where m =
n

2

and let P be the point [x0 : x1 : · · · : xn] = [1 : 0 : · · · : 0]. Since P is not on X and every
hyperplane containing P is tangent to X, it represents a 0-plane that is transverse but not
very transverse to X. More generally, for every even 0 ≤ r < n, the r-plane

H := {xr+1 = · · · = xn = 0} ∼= Pr

is transverse as it intersects X in a strange quadric defined by (2.1) with m replaced by
r. Moreover, the hyperplanes containing H also contain P , hence they are tangent to X;
consequently, H is not very transverse.

Let us first show that, in the cases d = 1, 2, Theorem 1.1 follows easily from the main
result of [Bal03].

Proposition 2.3. Let X ⊂ Pn be a hyperplane or a smooth quadric over Fq. Then there
exists a sequence of linear subspaces H0 ⊂ H1 ⊂ · · · ⊂ Hn−1 where each Hr is an r-plane
defined over Fq and very transverse to X.
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Proof. Ballico [Bal03] proved that if q ≥ d(d− 1)dimX then there is an Fq-hyperplane Hn−1

transverse to Xn−1 := X. Note that d(d − 1)dimX equals 0 when d = 1 and equals 2
when d = 2, so the above inequality always holds in our situation. Therefore, we can
take Xn−2 := Xn−1 ∩ Hn−1, consider it as a hypersurface in Hn−1

∼= Pn−1, and repeat the
same process to find an (n − 2)-plane Hn−2 ⊂ Hn−1 over Fq transverse to Xn−2. Thus, by
induction, we have a sequence of transverse linear subspaces H0 ⊂ H1 ⊂ · · · ⊂ Hn−1 such
that dimHr = r. Notice that each Hr in this sequence is very transverse since they are all
contained in the transverse hyperplane Hn−1. �

2.1. Strategy for proving Theorem 1.1. Let X ⊂ Pn be a smooth hypersurface over Fq
that admits a very transverse (r − 1)-plane Hr−1 ⊂ Pn. Among the r-planes over Fq that
contain Hr−1, we would like to estimate the number of bad choices, namely, the r-planes
that are not very transverse to X.

By definition, a linear subspace H ⊂ Pn is not very transverse to X if and only if

(i) it is not transverse to X, or
(ii) the dual subspace H∗ ⊂ (Pn)∗ is contained in X∗.

Our estimates for the numbers of bad r-planes of these two types are established using
geometry of the dual hypersurface X∗. Let us deal with r-planes of type (ii) first:

Proposition 2.4. Let X ⊂ Pn be a smooth hypersurface of degree d over a field k which
admits a very transverse (r − 1)-plane Hr−1 over k. Then the number of r-planes H that
contain Hr−1 and satisfy H∗ ⊂ X∗ is at most d(d− 1)n−1.

Proof. By hypothesis, H∗r−1 ∩X∗ is a hypersurface in H∗r−1
∼= Pn−r whose degree is equal to

deg(X∗) ≤ d(d− 1)n−1 by Plücker’s formula [Kle86, Propositions 2 and 9]. For each r-plane
H containing Hr−1, its dual H∗ appears as a hyperplane in H∗r−1, and H∗ ⊂ X∗ means that
H∗ appears as a linear component of the hypersurface H∗r−1 ∩X∗. As this hypersurface has
degree at most d(d− 1)n−1, the statement follows. �

The estimate for the number of bad r-planes of type (i) is more complicated. We will turn
this into a point counting problem on a certain projective scheme, and leave the explicit
computation to the next subsection.

In the following, we fix a smooth hypersurface X ⊂ Pn of degree d over a field k and
assume that it admits a very transverse (r − 1)-plane Hr−1 over k. Let γ : X −→ (Pn)∗ be
the Gauss map associated with X and define

(2.2) Yr−1 := γ−1(H∗r−1).

Proposition 2.5. The scheme Yr−1 defined above, as a subscheme of Pn, is a complete
intersection of codimension r + 1 and multidegree (d, d− 1, . . . , d− 1).

Proof. By hypothesis, the intersection X∗ ∩ H∗r−1 is a hypersurface in H∗r−1
∼= Pn−r, so

it has dimension n − r − 1. Since Yr−1 = γ−1(X∗ ∩ H∗r−1), the finiteness of Gauss map
[Zak93, Corollary I.2.8] implies that Yr−1 has dimension n − r − 1 as well. Thus it has
codimension r + 1 in Pn. Let Li = 0, i = 1, . . . , r, be the linear equations that cut out
H∗r−1 in (Pn)∗. By construction, Yr−1 is the zero locus on X of the polynomials γ∗Li for i =
1, . . . , r. This shows that Yr−1 is a complete intersection, and its multidegree is determined
by deg(X) = d and deg(γ∗Li) = d− 1 for all i. �
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Let π : Pn 99K Pn−r be the projection from Hr−1. Note that taking a point P ∈ Pn−r to
its preimage π−1(P ) ⊂ Pn defines a bijection between the following sets

(2.3) Pn−r(k′) ∼
// {r-planes H ⊂ Pn over k′ such that H ⊃ Hr−1}

where k′ is any field extension over k. In the following, the proper image π(Yr−1) means the
closure of π(Y ◦r ), where Y ◦r−1 ⊂ Yr−1 be the subset where π is well-defined.

Lemma 2.6. Let P ∈ Pn−r be a k-point outside the proper image π(Yr−1) ⊂ Pn−r of the
scheme defined in (2.2). Then the image r-plane H of P under bijection (2.3) is defined
over k and transverse to X.

Proof. Assume, to the contrary, that H is not transverse to X, namely, there exists a point
Q ∈ X ∩ π−1(P ) such that Q ∈ H ⊂ TQX. The inclusion relation Hr−1 ⊂ H implies
Hr−1 ⊂ TQX, or equivalently, γ(Q) ∈ H∗r−1, which implies Q ∈ Yr−1. We claim that
Q /∈ Hr−1. Indeed, if Q ∈ Hr−1, then the same relation Hr−1 ⊂ H implies Q ∈ Hr−1 ⊂ TQX,
whence Hr−1 is not transverse to X, contradiction. We conclude that Q ∈ Yr−1 \ Hr−1, so
the projection π is well defined at Q, and P = π(Q) ∈ π(Yr−1), contradiction. �

Suppose that the ground field k is finite. As a consequence of Lemma 2.6, to find an
r-plane H ⊃ Hr−1 over k which is transverse to X, it is sufficient to show that the k-points
on Pn−r are strictly more than the k-points on π(Yr−1).

2.2. Proof of Theorem 1.1. In the following, we will compute an estimate for the number
of bad r-planes of type (i) and then conclude the proof of Theorem 1.1. Some technical
lemmas needed in the process will be postponed to the next subsection.

Definition 2.7. For every integer m ≥ 0 and q a power of a prime number, we define

θm(q) := #Pm(Fq) =
qm+1 − 1

q − 1

and set θm(q) = 0 for m < 0. We will write θm(q) briefly as θm if there is no ambiguity about
q from the context.

Lemma 2.8. Let X ⊂ Pn be a reduced subscheme over Fq and write X =
⋃t
i=1Xi where Xi

is an irreducible component of dimension mi < n and degree di. Denote d :=
∑t

i=1 di and
m := max(m1, ...,mt). Then

#X(Fq) ≤ d(θm − θ2m−n) + θ2m−n.

Proof. We use the inequality from [Cou16, Theorem 3.1], which states

#X(Fq) ≤
t∑
i=1

di(θmi
− θ2mi−n) + θ2m−n.

Based on this, it is sufficient to verify that

θmi
− θ2mi−n ≤ θm − θ2m−n for each i ∈ {1, . . . , t}(2.4)

Let us proceed by three cases:

Case (2m− n < 0): Then 2mi − n < 0 and (2.4) reduces to θmi
≤ θm which clearly holds.
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Case (2m− n ≥ 0 and 2mi − n ≥ 0): Rearrange (2.4) as θ2m−n−θ2mi−n ≤ θm−θmi
, which

is the same as

q2m − q2mi

qn
≤ qm − qmi , or equivalently, qm + qmi ≤ qn.

The last inequality holds since qm + qmi ≤ qn−1 + qn−1 = 2qn−1 ≤ qn.

Case (2m− n ≥ 0 and 2mi − n < 0): Then (2.4) reduces to θmi
+ θ2m−n ≤ θm, that is,

qmi+1 + q2m−n+1 ≤ qm+1 + 1.

The hypothesis implies 2m− n > 2mi − n and thus m ≥ mi + 1. We also have n ≥ m + 1,
hence m ≥ 2m− n+ 1. Therefore,

qm+1 + 1 ≥ qm + qm + 1 ≥ qmi+1 + q2m−n+1 + 1 > qmi+1 + q2m−n+1

as desired. �

Lemma 2.9. Let X ⊂ Pn be a smooth hypersurface of degree d ≥ 2 over Fq. Assume that
1 ≤ r ≤ n− 1 and that X admits a very transverse (r − 1)-plane Hr−1 ⊂ Pn over Fq. Then
X admits a very transverse r-plane Hr ⊃ Hr−1 over Fq provided that

q ≥ d(d− 1)r + βr where βr =


1 if r ≤ n− 3,

d if r = n− 2,

0 if r = n− 1.

Proof. Let γ : X −→ (Pn)∗ be the Gauss map associated with X. By Proposition 2.5, the
preimage Yr−1 := γ−1(H∗r−1) is a complete intersection in Pn of dimension n − r − 1 and of
degree d(d − 1)r. Let π : Pn 99K Pn−r be the projection from Hr−1 and consider the proper
image π(Yr−1) ⊂ Pn−r. If we write π(Yr−1) =

⋃t
i=1 Y

′
i , where Y ′i is an irreducible component

of dimension mi and degree di, then

m := max(m1, . . . ,mt) ≤ n− r − 1 and
t∑
i=1

di ≤ d(d− 1)r.

It follows from Lemma 2.8 that

#π(Yr−1)(Fq) ≤ d(d− 1)r (θm − θ2m−n) + θ2m−n.

According to Lemma 2.6, the Fq-points in Pn−r outside π(Yr−1) one-to-one correspond to
the r-planes containing Hr−1 over Fq that are transverse to X. On the other hand, there are
at most d(d−1)n−1 many r-planes Hr ⊃ Hr−1 that satisfy H∗r ⊂ X∗ by Proposition 2.4. Also
recall that the transverse hyperplanes are automatically very transverse. As a consequence,
there exists Hr as in the statement provided that

(2.5) θn−r > d(d− 1)r (θm − θ2m−n) + θ2m−n + δr

where δr = d(d − 1)n−1 if r ≤ n − 2 and δr = 0 if r = n − 1. The proof of (2.5) is purely
numerical and will be established via Lemmas 2.10 and 2.11. �

Proof of Theorem 1.1. The cases d = 1, 2 are already proved in Proposition 2.3, so we assume
d ≥ 3 in the following. To prove the theorem, we will establish the existence of linear
subspaces H0 ⊂ · · · ⊂ Hs, where each Hi is a very transverse i-plane over Fq, for all 0 ≤ s ≤ r
by induction on s.
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In the initial case s = 0, we need to find a point P ∈ Pn(Fq)\X(Fq). By the Homma–Kim
bound [HK13, Theorem 1.2],

#X(Fq) ≤ (d− 1)qn−1 + dqn−2 + θn−3.

It is sufficient to prove that

(d− 1)qn−1 + dqn−2 + θn−3 < θn.

A straightforward computation reduces the last inequality to d− 1 < q, which follows from
our hypothesis since

q ≥ d(d− 1)r + βr ≥ d > d− 1.

Hence there exists a point P ∈ Pn(Fq) \X(Fq). Note that P is non-strange, namely, is con-

tained in a transverse hyperplane over Fq because of d ≥ 3. Therefore, P is a 0-dimensional
linear subspace very transverse to X.

Before entering the inductive step, let us prove that

(2.6) d(d− 1)` + β` ≥ d(d− 1)`−1 + β`−1 for all 1 ≤ ` ≤ r.

This implication holds for all ` ≤ n − 3 because β` = β`−1 = 1 in these cases. It also holds
for ` = n− 2 because βn−2 = d > 1 = βn−3. When ` = n− 1, the desired inequality

d(d− 1)n−1 ≥ d(d− 1)n−2 + d

can be derived easily from the assumption d ≥ 3. As a consequence, combining (2.6) with
the hypothesis q ≥ d(d− 1)r + βr gives us

(2.7) q ≥ d(d− 1)s + βs for all 0 ≤ s ≤ r.

Now assume that there exists a sequence of linear subspaces H0 ⊂ · · · ⊂ Hs−1 for some
s ∈ {1, . . . , r} where each Hi is a very transverse i-plane over Fq. Then Lemma 2.9, together
with (2.7), implies that there exists a very transverse s-plane Hs ⊃ Hs−1 over Fq. This
establishes the inductive step and thus finishes the proof. �

2.3. Some numerical lemmas. Here we establish inequality (2.5) which is needed in the
proof of Lemma 2.9.

Lemma 2.10. Let n, r, d be positive integers that satisfy 1 ≤ r ≤ n− 1 and d ≥ 2. Define

δr :=

{
d(d− 1)n−1 if r ≤ n− 2

0 if r = n− 1
and βr :=


1 if r ≤ n− 3

d if r = n− 2

0 if r = n− 1

Then, for every integer q, the inequality q ≥ d(d− 1)r + βr implies (q − 1)q−n+rδr ≤ βr.

Proof. The implication is obvious when r = n − 1 since δr = βr = 0 in this case. Assume
r ≤ n− 2. Using q ≥ d(d− 1)r + βr, we obtain

(2.8)

(q − 1)q−n+rδr < q · q−n+rδr =
δr

qn−r−1
≤ δr

(d(d− 1)r + βr)n−r−1

≤ δr
(d(d− 1)r)n−r−1

=
d(d− 1)n−1

(d(d− 1)r)n−r−1
.
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When r = n − 2, the last term equals d − 1 < d = βr, so the statement holds. Assume
r ≤ n− 3. Together with r ≥ 1, we obtain n ≥ r + 3 ≥ r + 2 + 1/r. It follows that

(2.9) n− r − 1 ≥ 1 +
1

r
, or equivalently, r(n− r − 1) ≥ r + 1.

The last term of (2.8) can be rewritten as

d(d− 1)n−1

d · dn−r−2(d− 1)r(n−r−1)
<

d(d− 1)n−1

d · (d− 1)n−r−2(d− 1)r(n−r−1)
=

(d− 1)r+1

(d− 1)r(n−r−1)
.

Then (2.9) implies that the last term is at most 1 = βr. This establishes the statement. �

Lemma 2.11. Retain the hypothesis from Lemma 2.10 and assume that q is a power of a
prime number. Let m be an integer that satisfies 0 ≤ m ≤ n− r − 1. Then

θn−r(q) > d(d− 1)r (θm(q)− θ2m−n(q)) + θ2m−n(q) + δr.

Proof. We proceed by two cases:

Case (2m− n ≥ 0): In this case, the desired inequality is

qn−r+1 − 1

q − 1
> d(d− 1)r

(
qm+1 − 1

q − 1
− q2m−n+1 − 1

q − 1

)
+
q2m−n+1 − 1

q − 1
+ δr.

Multiplying both sides by q−n+r(q − 1) and rearranging, we obtain

(2.10) q > d(d− 1)r
(
qm−n+r+1 − q2m−2n+r+1

)
+ q2m−2n+r+1 + (q − 1)q−n+rδr.

Consider the right hand side as a function g(m) in m. Taking derivative gives

g′(m) = d(d− 1)r
(
qm−n+r+1 ln(q)− 2q2m−2n+r+1 ln(q)

)
+ 2q2m−2n+r+1 ln(q).

The assumption m ≤ n− r − 1 implies n ≥ m+ r + 1 > m+ 1. It follows that

m− n+ r = m+ (n− 2n) + r > 2m− 2n+ r + 1.

Hence qm−n+r+1 ≥ 2qm−n+r > 2q2m−2n+r+1, which implies g′(m) > 0, so g(m) is increasing
in m. As a consequence, it is sufficient to prove (2.10) when m attains the maximal possible
value n− r − 1, that is,

q > d(d− 1)r
(
1− q−r−1

)
+ q−r−1 + (q − 1)q−n+rδr.

We establish this via the following inequalities:

q ≥ d(d− 1)r + βr > d(d− 1)r + q−r−1 (1− d(d− 1)r)︸ ︷︷ ︸
<0

+βr

≥ d(d− 1)r − q−r−1d(d− 1)r + q−r−1 + (q − 1)q−n+rδr(by Lemma 2.10)

= d(d− 1)r
(
1− q−r−1

)
+ q−r−1 + (q − 1)q−n+rδr.

Case (2m− n < 0): In this case, the desired inequality reduces to:

qn−r+1 − 1

q − 1
> d(d− 1)r ·

(
qm+1 − 1

q − 1

)
+ δr.

Multiplying both sides by q−n+r(q − 1) and rearranging the terms gives

q > d(d− 1)rqm+1−n+r + (1− d(d− 1)r)q−n+r + (q − 1)q−n+rδr.
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Notice that m ≤ n− r−1 implies m+ 1−n+ r ≤ 0. Then the above inequality follows from

q ≥ d(d− 1)r + βr ≥ d(d− 1)rqm+1−n+r + βr

> d(d− 1)rqm+1−n+r + (1− d(d− 1)r)︸ ︷︷ ︸
<0

q−n+r + (q − 1)q−n+rδr.(by Lemma 2.10)

This completes the proof. �

3. Smooth sections on Frobenius classical hypersurfaces

We prove Theorem 1.4 in this section. In order to prove this result, we need to estimate
the number of hyperplanes over the ground field which are tangent to a smooth hypersurface
X. Our main strategy is to turn counting such hyperplanes into counting points on a certain
0-dimensional subscheme of X.

3.1. Tangent hyperplanes over the ground field. Let X ⊂ Pn be a hypersurface defined
over Fq, where q is a fixed prime power, and let F = F (x0, . . . , xn) be the defining polynomial
of X. Consider the 2× (n+ 1) matrix

M :=

(
F0 · · · Fn
F q

0 · · · F q
n

)
where Fi :=

∂F

∂xi
.

For each (i, j) such that 0 ≤ i < j ≤ n, the maximal minor given by the i-th and j-th
columns of this matrix determines a hypersurface

Dij := {FiF q
j − F

q
i Fj = 0} ⊂ Pn

of degree (d− 1)(q + 1) over Fq. Let us define

ZX := X ∩
⋂

0≤i<j≤n

Dij.

Proposition 3.1. Let X ⊂ Pn be a hypersurface over Fq. Then a point P ∈ X(Fq) belongs
to ZX if and only if P is a singular point of X or TPX is defined over Fq.

Proof. Observe that P ∈ ZX if and only if the matrix M has rank equal to 0 or 1 when
evaluated at P , which happens if and only if

(F0(P ), . . . , Fn(P )) = (0, . . . , 0) or [F0(P ) : · · · : Fn(P )] ∈ Pn(Fq),
and thus correspond to the two conditions in the statement. �

Remark 3.2. Here is a more geometric way to view the locus ZX ⊂ X. Let {y0, . . . , yn} be
a system of homogeneous coordinates for (Pn)∗. Then Dij is the pullback of the hypersurface
{yiyqj − y

q
i yj = 0} ⊂ (Pn)∗ under the rational map

γ̃ : Pn 99K (Pn)∗ : [x0 : · · · : xn] 7→ [F0 : · · · : Fn]

which is obtained by extending the Gauss map of X to the ambient Pn. Because the inter-
section ∩i<j{yiyqj − y

q
i yj = 0} defines the collection of Fq-points on (Pn)∗, the locus ZX ⊂ X

consists of P ∈ X such that TPX is defined over Fq. Note that this includes the case
TPX = Pn, that is, P is singular.

Corollary 3.3. Let X ⊂ Pn be a smooth hypersurface over Fq. Then ZX ⊂ X is a zero-
dimensional subscheme which consists of P ∈ X such that TPX is defined over Fq. Further-

more, the number of hyperplanes over Fq tangent to X is bounded by #ZX(Fq).
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Proof. Since X is smooth, its Gauss map is finite [Zak93, Corollary I.2.8], which implies
that ZX has dimension zero. By Proposition 3.1 and the smoothness, ZX consists of P ∈ X
such that TPX is defined over Fq. There exists a surjective map from ZX(Fq) to the set of
Fq-hyperplanes tangent to X which sends P to TPX, which proves the last assertion. �

3.2. Interplay with Frobenius classicality. Let X ⊂ Pn be a smooth hypersurface over
Fq with defining polynomial F = F (x0, . . . , xn). Consider the hypersurface

X1,0 :=

{
n∑
i=0

xqi
∂F

∂xi
= 0

}
⊂ Pn.

If we let Φ: Pn −→ Pn denote q-th Frobenius endomorphism, then

(X ∩X1,0)(Fq) =
{
P ∈ X(Fq)

∣∣ Φ(P ) ∈ TPX
}
.

In particular, X is Frobenius classical if and only if X1,0 does not contain X, that is, X∩X1,0

has dimension n − 2. On the other hand, Corollary 3.3 asserts that ZX consists of P ∈ X
such that Φ(TPX) = TPX, whence ZX ⊂ X ∩ X1,0. We will use this relation to bound

the number #ZX(Fq), which will then provide a bound for the number of Fq-hyperplanes
tangent to X.

Lemma 3.4. Let X be a smooth hypersurface over Fq. Suppose that Y ⊂ X is a subscheme
which is irreducible over Fq and of dimension at least 1. Then there exists Dij such that
dim(Y ∩Dij) = dim(Y )− 1

Proof. Assume, to the contrary, that dim(Y ∩Dij) = dim(Y ) for all i < j. Because each Dij

is defined over Fq, the irreducibility of Y over Fq implies that Y ⊂ Dij. We conclude that Y
is contained in X∩

⋂
i<j Dij = ZX , which is impossible as dim(Y ) ≥ 1 and dim(ZX) = 0. �

Proposition 3.5. Let X ⊂ Pn be a smooth hypersurface of degree d over Fq. Suppose that
Y ⊂ X is an equidimensional subscheme over Fq of dimension at least 1. Then Y ∩ ZX
consists of at most deg(Y )[(d− 1)(q + 1)]dim(Y ) many Fq-points counted with multiplicity.

Proof. Let us proceed by induction on dim(Y ). We first establish the inductive step. Assume
that the statement holds for any equidimensional subscheme of X over Fq of dimension `
for all 1 ≤ ` < dim(Y ). If Y is irreducible over Fq, then Lemma 3.4 shows that there exists
Dij such that dim(Y ∩ Dij) = dim(Y ) − 1. By the induction hypothesis, the intersection
(Y ∩Dij) ∩ ZX = Y ∩ ZX consists of at most

deg(Y ∩Dij)[(d− 1)(q + 1)]dim(Y )−1 = deg(Y )[(d− 1)(q + 1)]dim(Y )

many Fq-points counted with multiplicity. If Y is not irreducible over Fq, then we can express
Y =

⋃m
s=1 Ys where each Ys is a component irreducible over Fq and m ≥ 2. By applying the

above result to each Ys, we conclude that Y ∩ ZX consists of at most
m∑
s=1

deg(Ys)[(d− 1)(q + 1)]dim(Ys) = deg(Y )[(d− 1)(q + 1)]dim(Y )

many Fq-points counted with multiplicity.
The argument for the initial case dim(Y ) = 1 is almost the same as the inductive step.

The only difference is that the induction hypothesis has to be replaced by Bézout’s theorem
in order to conclude that Y ∩Dij, and thus Y ∩ ZX , consists of at most

deg(Y ) deg(Dij) = deg(Y )(d− 1)(q + 1)
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many Fq-points counted with multiplicity. �

Corollary 3.6. Let X ⊂ Pn be a smooth Frobenius classical hypersurface of degree d over Fq
with n ≥ 3. Then ZX consists of at most

d(q + d− 1)[(d− 1)(q + 1)]n−2

many Fq-points counted with multiplicity. In particular, the number of Fq-hyperplanes tan-
gent to X is bounded by the number above.

Proof. By applying Proposition 3.5 to Y = X ∩ X1,0 which has dimension at least 1 since
n ≥ 3. Since Y ∩ ZX = (X ∩X1,0) ∩ ZX = ZX , we conclude that ZX has at most

deg(X) deg(X1,0)[(d− 1)(q + 1)]n−2 = d(q + d− 1)[(d− 1)(q + 1)]n−2

many Fq-points counted with multiplicity. The last assertion follows from Corollary 3.3. �

3.3. Refinement of Ballico’s result. Let us finish the proof of Theorem 1.4.

Lemma 3.7. Let n ≥ 2, d ≥ 3 be integers and define cd := (3d+ 3)(3d− 1)−1. Then

cd · d(d− 1)n−2 ≥ 3d(n− 2).

Proof. For d = 3, we have c3 = 3/2, hence c3 · d(d − 1)n−2 = (3/2) · d · 2n−2 ≥ 3d(n − 2)
where the last inequality uses 2n−2 ≥ 2(n − 2). For d ≥ 4, we have cd > 1. Using the fact
that 3n−2 ≥ 3(n− 2), we obtain cd · d(d− 1)n−2 > d · 3n−2 ≥ 3d(n− 2). �

Proof of Theorem 1.4. The case d = 2 follows from Ballico’s theorem (see also Proposi-
tion 2.3), so we assume d ≥ 3 in the remaining part of the proof. When n = 2, the conclusion
follows from [Asg19b, Theorem 3.3.1] which proved existence of a transverse Fq-line assum-
ing q ≥ d − 1, so we may assume n ≥ 3. By Corollary 3.6, there exists an Fq-hyperplane
transverse to X if

qn + qn−1 + · · ·+ 1 > d(d+ q − 1)[(d− 1)(q + 1)]n−2.

It suffices to show that

qn ≥ d(d+ q − 1)[(d− 1)(q + 1)]n−2.

Since q ≥ cd · d(d− 1)n−2, it is enough to show that

qn−1 · cd ≥ (d+ q − 1)(q + 1)n−2,

or equivalently,

(3.1)

(
1− 1

q + 1

)n−2

· cd ≥
q + d− 1

q
.

Our hypothesis and Lemma 3.7 imply q ≥ 3d(n− 2), thus 1
3d
> n−2

q+1
. Therefore,

(3.2)
1

1− 1
3d

>
1

1− n−2
q+1

.

Using Bernoulli’s inequality [MP93], which asserts that (1+x)` ≥ 1+ `x for all integer ` ≥ 0
and real number x ≥ −1, we obtain:(

1− 1

q + 1

)n−2

cd ≥
(

1− n− 2

q + 1

)
cd =

(
1− n− 2

q + 1

)
3d+ 3

3d− 1
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=

(
1− n− 2

q + 1

)(
1 +

1

d

)(
1

1− 1
3d

)
>

(
1− n− 2

q + 1

)(
1 +

1

d

)(
1

1− n−2
q+1

)
(by (3.2))

= 1 +
1

d
≥ 1 +

1

d(d− 1)n−3

> 1 +
1

q/(d− 1)
= 1 +

d− 1

q
=
q + d− 1

q
.(since q > d(d− 1)n−2)

This proves the desired inequality (3.1), and completes the proof of the theorem. �

4. Bertini theorems for reduced hypersurfaces

In this section, we prove Theorem 1.5 by splitting the task into two parts. The first result
handles the case n ≥ 3.

Theorem 4.1. Let X ⊂ Pn be a reduced hypersurface of degree d ≥ 2 over Fq where n ≥ 3.
Then there exists a hyperplane H ⊂ Pn over Fq such that X∩H is reduced and has dimension
n− 2 provided that

• q ≥ d(d− 1) + 1 when n = 3,
• q ≥ d when n ≥ 4.

The next result handles the case n = 2.

Theorem 4.2. Let C ⊂ P2 be a reduced curve of degree d ≥ 2 over Fq. Suppose that

q ≥ 3

2
d(d− 1).

Then there exists an Fq-line L ⊂ P2 which is transverse to C.

4.1. Existence of reduced hyperplane sections. The next lemma uses the scheme ZX
defined previously in Section 3.1. Since X is not necessarily smooth, it is possible that
dim(ZX) ≥ 1.

Lemma 4.3. Let X ⊂ Pn be a reduced hypersurface and X ′ ⊂ XFq
be an irreducible compo-

nent of degree at least 2. Then X ′ 6⊂ ZX . In particular, there exists Dij such that X ′ ∩Dij

has dimension n− 2.

Proof. Assume, to the contrary, that X ′ ⊂ ZX . Then, for each P ∈ X ′, Proposition 3.1
implies that either P is a singular point or TPX is defined over Fq. Therefore, X ′ is con-
tained in the union of the singular locus Sing(X) and all the hyperplanes over Fq. It follows
that X ′ ⊂ Sing(X) because X ′ is irreducible of degree at least 2. However, X being re-
duced implies that Sing(X) has dimension at most n − 2, which leads to a contradiction
as dim(X ′) = n − 1. We conclude that X ′ 6⊂ ZX , and the last statement follows as X ′ is
irreducible. �

Let X ⊂ Pn be a reduced hypersurface of degree d over Fq. Write XFq
= ∪`i=1Xi where

each Xi is irreducible and set di := deg(Xi). After rearranging the indices, we may assume
there exists 0 ≤ t ≤ ` such that di = 1 for 1 ≤ i ≤ t and di > 1 otherwise. To find a reduced
hyperplane section on X over Fq, we need to estimate the number of bad hyperplanes, namely,
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the hyperplanes H over Fq which is a component of X, or intersects X properly with the
intersection X ∩ H being non-reduced. For such an H, let us consider the following three
mutually exclusive conditions:

(I) H is a linear component of X, so that H = Xi for some 1 ≤ i ≤ t.

In the next two conditions, we assume that H intersects X properly such that X ∩H is
non-reduced. If X is defined by the polynomial F , the properness implies that X ∩H is a
hypersurface in H ∼= Pn−1 defined by F |H = 0. Consider the factorization of F |H over the
algebraic closure:

(4.1) F |H =
m∏
j=1

G
mj

j

where the factors Gj are irreducible over Fq and coprime to each other. As explained before
Theorem 1.5 in Section 1, the assumption that X ∩H is non-reduced means that mj ≥ 2 for
some 1 ≤ j ≤ m.

(II) H intersects X properly and passes through the intersection of two distinct linear
components Xi ∩Xj where 1 ≤ i < j ≤ t. In this case, (X ∩H)Fq

has Xi ∩Xj as an

irreducible component along which (X ∩ H)Fq
is non-reduced. More explicitly, this

means that there exists a factor Gα with deg(Gα) = 1 and mα ≥ 2 in (4.1) such that
{Gα = 0} = Xi ∩Xj as hyperplanes in H ∼= Pn−1.

(III) H intersects X properly and does not pass through the intersection of any two linear
components of X. Hence, if Y is a component of (X ∩H)Fq

along which (X ∩H)Fq

is non-reduced, then Y ⊂ Xi for some i > t. Note that Y = {Gα = 0} where Gα is a
factor in (4.1) with mα ≥ 2.

Lemma 4.4. The number of hyperplanes of type (I) or (II) is bounded by(
t

2

)
· (q + 1) + 1 =

1

2
t(t+ 1)(q + 1) + 1.

Proof. Suppose that t ≤ 1, that is, X contains at most one linear component. Then there
is at most one hyperplane of type (I) and no hyperplane of type (II). Hence the number of
hyperplanes under consideration is bounded by 1.

Suppose that X contains at least two linear components. Then a hyperplane H of type (I)
or (II) must contain Xi ∩ Xj for some 1 ≤ i < j ≤ t. Note that there are at most q + 1
many Fq-hyperplanes pass through Xi∩Xj due to, for example, the fact that the intersection
of more than q + 1 many Fq-hyperplanes in Pn has codimension at least 3. Therefore, the
bound in this case is given by

(
t
2

)
· (q + 1).

Adding the two bounds in the above two cases together gives the desired bound. �

Given a hyperplane H of type (III), we define AH to be the collection of subschemes
Y ⊂ X which can be written as Y = {Gα = 0} for some Gα with mα ≥ 2 in (4.1). Given
any Y ∈ AH and any P ∈ Y (Fq), either TPX = H or P is a singular point of X. It then
follows from Proposition 3.1 that

(4.2) Y ⊂ ZX = X ∩
⋂

0≤i<j≤n

Dij.
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Let us further take the union
B :=

⋃
H satisfies (III)

AH .

Lemma 4.5. The cardinality of B is bounded by (d− t)(d−1)(q+ 1). Therefore, the number
of hyperplanes of type (III) is bounded by (d− t)(d− 1)(q + 1)2.

Proof. Let Y ∈ B. Then Y ⊂ Xk for some k ≥ t + 1. Because deg(Xk) ≥ 2, there exists
Dij such that dim(Xk ∩ Dij) = n − 2 by Lemma 4.3. Hence Y is the underlying reduced
subscheme of an irreducible component of (Xk ∩Dij)Fq

due to (4.2). By Bézout’s theorem,

the number of irreducible components of (Xk ∩Dij)Fq
is bounded by

deg(Xk ∩Dij) = deg(Xk) deg(Dij) = dk(d− 1)(q + 1).

Hence the cardinality of B is bounded by∑̀
k=t+1

dk(d− 1)(q + 1) = (d− t)(d− 1)(q + 1).

This proves the first statement. The second statement holds since there are at most q + 1
many Fq-hyperplanes passing through each Y ∈ B. �

Proposition 4.6. Let X ⊂ Pn be a reduced hypersurface of degree d over Fq. Then the
number of Fq-hyperplanes H ⊂ Pn such that H does not intersect X properly or X ∩ H is
non-reduced is bounded by the number

(d− t)(d− 1)(q + 1)2 +
1

2
t(t− 1)(q + 1) + 1 ≤ d(d− 1)(q + 1)2 + 1.

Proof. A hyperplane H as in the statement is of type (I), (II), or (III), so the bound on the
left hand side is obtained by summing up the bounds in Lemmas 4.4 and 4.5. The inequality
can be verified directly so we leave it to the reader. �

Proof of Theorem 4.1. By Proposition 4.6, we will get a desirable hyperplane if

(4.3)
n∑
j=0

qj > (d− t)(d− 1)(q + 1)2 +
1

2
t(t− 1)(q + 1) + 1.

We can cancel the constant 1 on the right side by starting the sum on the left with j = 1.
In fact, we will ensure that a stronger inequality holds:

(4.4)
n∑
j=1

qj >

(
(d− t)(d− 1) +

1

2
t(t− 1)

)
(q + 1)2.

We want to maximize the quantity

φ(t) := (d− t)(d− 1) +
1

2
t(t− 1)

as a function of t on the interval [0, d]. Note that φ(t) is a quadratic polynomial in t with the
leading term (1/2)t2. As the graph of φ(t) is the usual upward-facing parabola, the maximum
is attained at the end point t = 0 or t = d. Since φ(0) = d(d− 1) and φ(d) = 1

2
d(d− 1), we

conclude that φ(t) ≤ d(d− 1).
Straightforward computations show that the inequality

(4.5) qn−3(q − 1) ≥ d(d− 1)
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holds in the following cases:

• n = 3 and q ≥ d(d− 1) + 1,
• n ≥ 4 and q ≥ d.

By hypothesis, we have n ≥ 3, which implies that
n∑
j=1

qj > qn−3(q3 + q2 − q − 1) = qn−3(q − 1)(q + 1)2.

Combining this with (4.5), we obtain
n∑
j=1

qj > d(d− 1)(q + 1)2 ≥ φ(t)(q + 1)2 =

(
(d− t)(d− 1) +

1

2
t(t− 1)

)
(q + 1)2.

which is exactly (4.4), as desired. �

Remark 4.7. Note that inequality (4.3) fails when n = 2 and hence necessitates a different
approach in Section 4.2.

While our main Theorem 4.1 is only stated for reduced hyperplane sections for the sake
of simplicity, it easily extends by induction to the following more general result.

Corollary 4.8. Let X ⊂ Pn be a reduced hypersurface of degree d ≥ 2 over Fq with n ≥ 3.
Then, for every 2 ≤ r ≤ n − 1, there exists an r-plane T ⊂ Pn over Fq such that X ∩ T is
reduced and has the expected dimension r − 1 provided that

q ≥ d(d− 1) + 1.

The proof of the corollary is left as an easy exercise to the reader.

4.2. Transverse lines to reduced plane curves. We prove Theorem 4.2 in this section.

Lemma 4.9. Suppose that C ⊂ P2 is an integral curve over Fq of degree d ≥ 2. Then the
number of Fq-lines not transverse to C is bounded by

1

2
(d− 1)(3d− 2)(q + 1).

Proof. An Fq-line L is not transverse to C either if it passes through a singular point of C
or if L = TPC for some P ∈ C. Since C is irreducible, one can derive from, for example,
[Liu02, §7.5, Proposition 5.4], that the number of singular points of C is at most

1

2
(d− 1)(d− 2).

Because each singular point has at most q + 1 distinct Fq-lines passing through it, this
accounts for

1

2
(d− 1)(d− 2)(q + 1)

many non-transverse Fq-lines.
To estimate the number of the second type of non-transverse lines, first note that the

condition L = TPC implies that TPC is defined over Fq, thus P ∈ ZC by Proposition 3.1.
As C is integral, it intersects some Dij in 0-dimensional scheme by Lemma 4.3. Thus, the
number of Fq-lines that arise as TPC is at most

C ·Dij = deg(C) deg(Dij) = d(d− 1)(q + 1).
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Consequently, the number of non-transverse Fq-lines to C is at most

1

2
(d− 1)(d− 2)(q + 1) + d(d− 1)(q + 1) =

1

2
(d− 1)(3d− 2)(q + 1)

as claimed. �

Lemma 4.10. Let C ⊂ P2 be a reduced curve of degree d ≥ 2 over Fq. Then the number of
Fq-lines not transverse to C is bounded by

3

2
d(d− 1)(q + 1).

Proof. Write CFq
= ∪`i=1Ci where each Ci is irreducible and let di := deg(Ci). For each

Fq-line L not transverse to C, we have that

(i) L meets Ci non-transversely for some i where deg(Ci) ≥ 2, or
(ii) L passes through an intersection point of Ci and Cj for some i 6= j. Note that this

includes L which meets Ci non-transversely where deg(Ci) = 1.

By applying Lemma 4.9 to each component Ci and summing up all the upper bounds, we
conclude that the number of lines in (i) is at most

1

2

∑̀
i=1

(di − 1)(3di − 2)(q + 1).

On the other hand, the number of points in Ci ∩ Cj for i 6= j is at most didj by Bézout’s
theorem. Since there are at most (q + 1) lines defined over Fq that pass through a point in
Ci ∩ Cj, the number of lines in (ii) is at most∑

i<j

didj(q + 1).

By adding up all the contributions above, we obtain that the number of Fq-lines not
transverse to C is at most

(q + 1)

(
1

2

∑̀
i=1

(di − 1)(3di − 2) +
∑
i<j

didj

)
As a factor of the above, we have

1

2

∑̀
i=1

(di − 1)(3di − 2) +
∑
i<j

didj =
∑̀
i=1

(
3

2
d2
i −

5

2
di + 1

)
+
∑
i<j

didj

=
∑̀
i=1

(
d2
i −

5

2
di + 1

)
+

1

2

(∑̀
i=1

d2
i + 2

∑
i<j

didj

)

=
∑̀
i=1

(
d2
i −

5

2
di + 1

)
+

1

2

(∑̀
i=1

di

)2

=

(∑̀
i=1

d2
i

)
− 5

2
d+ `+

1

2
d2
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where the last equality uses d =
∑`

i=1 di. Using the facts that∑̀
i=1

d2
i ≤

(∑̀
i=1

di

)2

= d2 and ` ≤ d,

we conclude that the number of Fq-lines not transverse to C is at most(
d2 − 5

2
d+ d+

1

2
d2

)
(q + 1) =

(
3

2
d2 − 3

2
d

)
(q + 1) =

3

2
d(d− 1)(q + 1)

as desired. �

Proof of Theorem 4.2. The number of Fq-lines in P2 is q2 + q + 1, so, by Lemma 4.10, there
exists a transverse Fq-line if

q2 + q + 1 >
3

2
d(d− 1)(q + 1).

This inequality holds under the hypothesis q ≥ 3
2
d(d− 1). Indeed, we have

q2 + q + 1 > q2 + q = q(q + 1) ≥ 3

2
d(d− 1)(q + 1)

which completes the proof. �

Remark 4.11. There is a different method [AG22, Proposition 2.2] to prove Theorem 4.2
at the cost of slightly stronger hypothesis q ≥ 2d(d− 1).

Our final result in the present paper concerns existence of transverse Fq-lines to reduced
hypersurfaces of arbitrary dimension. We obtain it by reducing the statement to the case of
plane curves (Theorem 4.2) with the help of Corollary 4.8.

Corollary 4.12. Let X ⊂ Pn be a reduced hypersurface of degree d defined over Fq. Suppose
that

q ≥ 3

2
d(d− 1).

Then there exists an Fq-line L ⊂ Pn which is transverse to X.

Proof. When d = 1, X is a hyperplane and any Fq-line L ⊂ Pn with L 6⊂ H satisfies the
conclusion. For d ≥ 2, it is straightforward to see that the inequality q ≥ 3

2
d(d− 1) implies

q ≥ d(d − 1) + 1. By Corollary 4.8, there exists a plane H ∼= P2 in Pn over Fq such that
X1 := X ∩H is a reduced plane curve. Now we apply Theorem 4.2 to find an Fq-line L ⊂ P2

such that X1 ∩ L consists of d distinct points. This line L also satisfies the condition that
#(X ∩ L) = d distinct points, and so L is a desired transverse line to X. �
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