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Abstract

Inspired by Dolgachev’s mirror symmetry for lattice-polarized K3 surfaces, we study
its analogue for abelian surfaces. In this paper, we introduce lattice-polarized abelian
surfaces and construct their coarse moduli spaces. We then construct stringy Kähler
moduli spaces for abelian surfaces and show that these two spaces are naturally identi-
fied for mirror pairs. We also introduce a natural involution on stringy Kähler moduli
spaces which, under mirror symmetry, pairs abelian surfaces and their duals. Finally,
we determine conditions for the existence of mirror partners and classify self-mirror
abelian surfaces via their Néron–Severi lattices.
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1 Introduction

Mirror symmetry predicts deep relationships between the complex geometry of a Calabi–
Yau manifold and the symplectic geometry of its mirror, which may be formulated as a
correspondence between their complex and stringy Kähler moduli spaces. Although a gen-
eral mathematical definition of the stringy Kähler moduli space remains elusive, it can be
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INTRODUCTION

rigorously formulated for curves and surfaces through Bridgeland stability conditions. In
fact, the attempt to construct such a moduli space was among the original motivations
for introducing stability conditions on triangulated categories; see [Bri07, Section 1.4] and
[Bri09, Section 2.2].

For elliptic curves, Bridgeland [Bri09, Section 4.1] showed that the manifold of stability
conditions provides a natural model for the stringy Kähler moduli space. Since an elliptic
curve is self-mirror, this space coincides with the complex moduli space, both of which can
be identified with H/PSL(2,Z), where H ⊆ C is the upper half-plane. In dimension two,
mirror symmetry for lattice-polarized K3 surfaces was originally introduced by Dolgachev
[Dol96] and later formulated in terms of stability conditions by Bayer and Bridgeland [BB17,
Section 7], who constructed stringy Kähler moduli spaces in a similar way and showed that
they are isomorphic to coarse moduli spaces of lattice-polarized K3 surfaces.

In this paper, we extend this picture to abelian surfaces, starting with the notion of
lattice-polarized abelian surfaces and the construction of their moduli spaces. For K3 sur-
faces, this construction is based on the notion of marked K3 surfaces, namely K3 surfaces X
equipped with lattice isometries

H2(X,Z) ∼ // E8(−1)⊕2 ⊕ U⊕3,

where E8 is the unique even unimodular lattice of rank 8 and

U =

(
0 1
1 0

)
is the hyperbolic lattice of rank 2. For abelian surfaces, by contrast, the marking is placed
on the first cohomology group. This reflects the fact that, unlike K3 surfaces, the period of
an abelian surface does not uniquely determine the surface itself [Shi78, Theorem II].

To formulate mirror symmetry for abelian surfaces, we consider two lattices associated
with an abelian surface X. Let NS(X) ⊆ H2(X,Z) denote the Néron–Severi lattice, and
denote the transcendental lattice by

T (X) := NS(X)⊥ ⊆ H2(X,Z).

The even cohomology group

Hev(X,Z) := H0(X,Z)⊕H2(X,Z)⊕H4(X,Z)

carries a natural bilinear form, known as the Mukai pairing, which extends the intersection
pairing on H2(X,Z) via

(r,D, s) · (r′, D′, s′) = DD′ − rs′ − sr′.

The numerical Grothendieck group of the derived category Db(X) is then given by

N(X) := H0(X,Z)⊕ NS(X)⊕H4(X,Z)

which becomes a lattice under the Mukai pairing. Note that N(X) ∼= NS(X)⊕ U .
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Definition 1.1. Two abelian surfaces X and Y are called mirror partners if there exist
lattice isometries T (X) ∼= N(Y ) and N(X) ∼= T (Y ).

In fact, the existence of an isometry T (X) ∼= N(Y ) guarantees N(X) ∼= T (Y ), and vice
versa; see Corollary 2.3.

Theorem 1.2. For each abelian surface X, one can associate two spaces

• the coarse moduli space of NS(X)-polarized abelian surfaces Mcpx(X), and

• the stringy Kähler moduli space MKäh(X),

such that if Y is a mirror partner of X, there are natural isomorphisms

Mcpx(X) ∼= MKäh(Y ) and MKäh(X) ∼= Mcpx(Y ).

The stringy Kähler moduli space of an abelian surface X can be realized as the quotient
of the space of complexified Kähler classes

K(X) := {ω ∈ NS(X)⊗ C | Im(ω) ∈ Amp(X)}

by the action of an arithmetic group. We show that K(X) admits a naturally defined invo-
lution that descends to an involution on MKäh(X). Under mirror symmetry, this involution
corresponds precisely to taking dual abelian surfaces on the complex moduli.

Theorem 1.3. For an abelian surface X, the map

ι : K(X) −→ K(X) : ω 7−→ ω

−1
2
ω2

defines an involution that inverts the Kähler volume vol(ω) := −1
2
ω2, meaning that

vol(ι(ω)) = vol(ω)−1.

Moreover, it satisfies the following properties:

(a) It descends to an involution D : MKäh(X) −→ MKäh(X).

(b) Suppose X admits a mirror partner Y . Fix an isometry T (Y ) ∼= N(X) and let

M : Mcpx(Y ) −→ MKäh(X)

be the induced mirror isomorphism. Then the composition

M−1 ◦ D ◦ M : Mcpx(Y ) −→ Mcpx(Y )

sends an NS(Y )-polarized abelian surface to an NS(Y )-polarized abelian surface such
that the underlying abelian surfaces are dual to each other.

In light of this theorem, we define:
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Definition 1.4. LetX be an abelian surface. For every complexified Kähler class ω ∈ K(X),
we call the class −2ω/ω2 ∈ K(X) the symplectic dual of ω.

Question 1.5. In complex geometry, an abelian variety A and its dual Â are derived equiv-
alent, that is, Db(A) ∼= Db(Â), via the Fourier–Mukai transform induced by the Poincaré

bundle on A × Â [Muk81]. On the symplectic side, are the Fukaya categories of X with
respect to ω and −2ω/ω2 related through certain Lagrangian correspondences?

The following result characterizes when an abelian surface admits a mirror partner:

Theorem 1.6. An abelian surface X with Picard number ρ(X) admits a mirror partner if
and only if

• ρ(X) ≤ 2, or

• ρ(X) = 3 and NS(X) ∼= Z(−2n)⊕ U for some positive integer n.

For a pair of mirror partners, either both surfaces have Picard number 2, or one surface
has Picard number 1 and the other has Picard number 3. In the latter case, each surface
uniquely determines the Néron–Severi group (and hence the numerical Grothendieck group
and transcendental lattice) of its mirror, as shown in the following table:

Mirror partners NS( · ) N( · ) T ( · )
X Z(2n) Z(2n)⊕ U Z(−2n)⊕ U2

Y Z(−2n)⊕ U Z(−2n)⊕ U2 Z(2n)⊕ U

The case of Picard number 2 is more subtle. In this setting, abelian surfaces with non-
isomorphic Néron–Severi lattices may share the same mirror. In fact, two abelian surfaces
have the same mirror if and only if their Néron–Severi lattices are stably equivalent, or
equivalently, have isomorphic discriminant forms; see Proposition 3.8. Moreover, an abelian
surface X of Picard number 2 may be self-mirror, namely T (X) ∼= N(X). A basic example
is the product of two non-isogenous elliptic curves. The following result gives a criterion for
identifying self-mirror abelian surfaces in terms of discriminant forms.

Theorem 1.7. Let X be an abelian surface with Picard number 2. Then X is self-mirror if
and only if the discriminant form (A, q) of NS(X) satisfies the following conditions:

(a) For any prime p ≡ 3 (mod 4), the p-Sylow subgroup Ap ⊆ A has the form

Ap ∼= (Z/pkZ)⊕ (Z/pkZ)

for some integer k.

(b) The 2-Sylow subgroup A2 ⊆ A equipped with the restricted form q2 := q |A2 is isomor-
phic to one of the following:
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(i) A2
∼= (Z/2kZ) ⊕ (Z/2kZ) for some integer k, and there exist odd integers θ1, θ2

with θ1 + θ2 ≡ 0 (mod 4) such that

q2(a1, a2) =
θ1a

2
1

2k
+
θ2a

2
2

2k
for each (a1, a2) ∈ A2.

Here a1, a2 are integers representing a1, a2 ∈ Z/2kZ.
(ii) A2

∼= (Z/2kZ)⊕ (Z/2k+1Z) for some integer k, and there exist odd integers θ1, θ2
with θ1 + θ2 ≡ 0 (mod 4) such that

q2(a1, a2) =
θ1a

2
1

2k
+
θ2a

2
2

2k+1
for each (a1, a2) ∈ A2.

Here a1, a2 are integers representing a1 ∈ Z/2kZ and a2 ∈ Z/2k+1Z.
(iii) A2

∼= (Z/2kZ) ⊕ (Z/2kZ) for some integer k, and there exists an odd integer θ
such that

q2(a1, a2) =
θa1a2
2k−1

for each (a1, a2) ∈ A2.

Here a1, a2 are integers representing a1, a2 ∈ Z/2kZ.
(iv) A2

∼= (Z/2kZ) ⊕ (Z/2kZ) for some integer k, and there exists an odd integer θ
such that

q2(a1, a2) =
θ(a21 + a1a2 + a22)

2k−1
for each (a1, a2) ∈ A2.

Here a1, a2 are integers representing a1, a2 ∈ Z/2kZ.

For principally polarized abelian surfaces, the conditions for being self-mirror reduce to
a particularly simple form:

Corollary 1.8. A principally polarized abelian surface X of Picard number 2 is self-mirror
if and only if the discriminant of NS(X) is not divisible by 16 nor any prime p ≡ 3 (mod 4).

Organization of the paper. In Section 2, we define lattice-polarized abelian surfaces and
construct their coarse moduli spaces. Section 3 is devoted to the construction of stringy
Kähler moduli spaces, as well as proving Theorems 1.2, 1.3, and 1.6. In Section 4, we prove
Theorem 1.7, Corollary 1.8, and present examples of self-mirror abelian surfaces.
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LATTICE-POLARIZED ABELIAN SURFACES

2 Lattice-polarized abelian surfaces

In this section, we introduce the notion of lattice-polarized abelian surfaces and construct
their coarse moduli spaces. We begin with a review of marked complex two-tori and set up
the notation to be used throughout the paper.

2.1 Marked complex 2-tori The main references for the following material are [BL99,
Sections 1.10, 7.3] and [Shi78]. Recall that for a complex torus X of dimension 2,

H1(X,Z) ∼= Z4, H2(X,Z) ∼=
∧2H1(X,Z) ∼= Z6,

and under the cup product

H2(X,Z)×H2(X,Z) −→ H4(X,Z) ∼= Z,

the group H2(X,Z) has the structure of a lattice isometric to U⊕3. In view of these facts,
throughout the paper we adopt the following conventions:

• Let L ∼= Z4 be the free Z-module of rank 4, and fix an isomorphism
∧4L ∼= Z.

• Let Λ :=
∧2L ∼= U⊕3 be the rank-6 lattice endowed with the bilinear form∧2L×

∧2L −→
∧4L ∼= Z : (v, v′) 7−→ v ∧ v′.

Following [Shi78, Section 1], we call an ordered basis (u1, u2, u3, u4) of L admissible if

u1 ∧ u2 ∧ u3 ∧ u4 = 1

under the chosen isomorphism
∧4L ∼= Z. Note that for L = H1(X,Z), the admissibleness is

naturally defined since the orientation of X determines a canonical isomorphism∧4L ∼= H4(X,Z) ∼= Z.

A marking of X is a choice of a basis of H1(X,Z), that is, an isomorphism

µ : H1(X,Z) −→ L.

We call a marking admissible if it maps an admissible basis to an admissible one, which
holds precisely when the induced map

∧2µ : H2(X,Z) −→ Λ

is an isometry of lattices.
More generally, consider a family π : X → S, namely a flat holomorphic map of com-

plex manifolds, such that the fibers are complex 2-tori. A marking of such a family is an
isomorphism of local systems

µ : R1π∗Z −→ LS.
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The moduli functor for marked complex tori (X , µ) admits a fine moduli space, constructed
as follows. We identify the Grassmannian Gr(2, 4) with the space of quotient maps

w : C4 −→ V ∼= C2.

After choosing a basis for V , each element w ∈ Gr(2, 4) is represented by a matrix

Π =

(
Π11 Π12 Π13 Π14

Π21 Π22 Π23 Π24

)
∈ M2×4(C).

One checks that the quotient V/w(Z4) is a complex torus precisely when

det

(
Π
Π

)
̸= 0.

This condition is equivalent to the kernels of w and w intersecting transversely, and may
therefore be abbreviated as w ∧ w ̸= 0. By [BL99, Theorem 7.3.1], the open subset

B := {w ∈ Gr(2, 4) | w ∧ w ̸= 0}
is a fine moduli space of marked complex 2-tori. Writing {e1, e2, e3, e4} for the standard basis
of Z4 ⊆ C4, each element w : C4 → V in B corresponds to a complex torus V/w(Z4), marked
by the dual basis of {w(e1), w(e2), w(e3), w(e4)}.

The period of a marked complex 2-torus

(X, µ : H1(X,Z) → L) ∈ B,
is the point in P(Λ ⊗ C) that represents the image of H2,0(X) ⊆ H2(X,C) under the iso-
morphism

∧2µ : H2(X,C) −→ Λ⊗ C.
Let w : C4 → V be the map corresponding to (X,µ), and express it as a matrix

Π =
(
Πij

)
∈ M2×4(C)

with respect to a given basis of V . Write µ = (µ1, µ2, µ3, µ4). Following [Shi78, Sections 2
and 3], the period can be explicitly realized as the 1-dimensional subspace spanned by

vw :=
∑

1≤i<j≤4

det

(
Π1i Π1j

Π2i Π2j

)
µi ∧ µj ∈ Λ⊗ C.

By construction,

vw · vw = det

(
Π
Π

)
= 0, vw · vw = det

(
Π
Π

)
̸= 0.

Lemma 2.1. The assignment w 7→ vw defines an isomorphism

B ∼= {[v] ∈ P(Λ⊗ C) | v · v = 0, v · v ̸= 0} ,
under which the complex 2-tori with admissible marking form the period domain

D := {[v] ∈ P(Λ⊗ C) | v · v = 0, v · v > 0} ⊆ B.
Proof. The map w 7→ vw coincides with the Plücker embedding Gr(2, 4) ↪→ P5, whose image
is defined by the quadric v · v = 0. In this setting, the non-degeneracy condition w ∧ w ̸= 0
translates to vw · vw ̸= 0. This establishes the identification for B. The statement regarding
admissible markings follows from [Shi78, Equation (2.4)].
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2.2 A LATTICE-THEORETIC LEMMA

2.2 A lattice-theoretic lemma If an abelian surface X has a mirror partner Y , then by
definition its transcendental lattice T (X) is isomorphic to N(Y ), and hence contains a copy
of the hyperbolic plane U . We now establish a lattice-theoretic lemma that describes several
conditions equivalent to this property. This lemma will play a key role in the construction
of coarse moduli spaces.

Definition-Lemma 2.2. A primitive sublattice M ⊆ U⊕3 of signature (1, r − 1) is said to
satisfy Condition ♢1 if any of the following equivalent statements holds:

(1) The orthogonal complement M⊥ ⊆ U⊕3 contains a copy of U .

(2) M admits a primitive embedding into U⊕2.

(3) r = rank(M) ≤ 3, and if r = 3, then M ∼= U ⊕ Z(−2n) for some positive integer n.

(4) There exists a primitive sublattice N ⊆ U⊕3 such that M⊥ ∼= N ⊕ U .

(5) There exists a primitive sublattice N ⊆ U⊕3 such that N⊥ ∼= M ⊕ U .

(6) There exists a primitive sublattice N ⊆ U⊕3 with equalities

M⊥ = N ⊕ U and N⊥ =M ⊕ U.

Proof. A key fact to be used in the proof is that all embeddings U ↪→ U⊕3 are equivalent
under the action of the orthogonal group O(U⊕3) [Nik79, Theorem 1.14.4]. We first show
that (1), (2), and (3) are equivalent.

(1) ⇐⇒ (2): If M⊥ contains a copy of U , then, under the action of O(U⊕3), we may
assume that this copy coincides with the last summand of U⊕3. It follows that M is
a primitive sublattice of U⊥ = U⊕2. Conversely, if M ⊆ U⊕2, then M⊥ contains the
orthogonal complement of U⊕2, which is isometric to U .

(2) ⇐⇒ (3): Suppose M is a primitive sublattice in U⊕2. Since M and U⊕2 have
signatures (1, r − 1) and (2, 2), respectively, we have r ≤ 3. If r = 3, then M has
signature (1, 2). This implies that M⊥ ⊆ U⊕2 is isomorphic to Z(2n) for some positive
integer n. Identifying Z(2n) as a sublattice of one summand of U⊕2 via O(U⊕2), we
conclude that

M = Z(2n)⊥ ∼= U ⊕ Z(−2n).

Conversely, if M has rank r ≤ 2, it admits a primitive embedding into U⊕2; see, for
example, [Huy16, Proposition 14.1.8]. If M ∼= U ⊕Z(−2n), the desired embedding can
be obtained by extending a primitive embedding Z(−2n) ↪→ U .

Next, we show that ((4) or (5)) =⇒ ((1) or (2)) =⇒ (6) =⇒ ((4) and (5)). Note that the
implication (4) =⇒ (1) and the one (6) =⇒ ((4) and (5)) are immediate.

(5) =⇒ (2): By applying O(U⊕3), we may identify the U -summand of M ⊕ U with
one of the summands of U⊕3, thereby realizing M as a sublattice of U⊥ = U⊕2. This
embedding is primitive since N⊥ ∼= M ⊕ U is primitive.

1The symbol ♢ is intended to suggest a mirror.
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(2) =⇒ (6): Let N ⊆ U⊕2 be the orthogonal complement of M ⊆ U⊕2. This gives
equalities M⊥ = N and N⊥ = M as sublattices in U⊕2. Adding one more copy of U ,
we obtain M⊥ = N ⊕ U and N⊥ =M ⊕ U as sublattices of U⊕3.

This completes the proof.

Corollary 2.3. Let X and Y be abelian surfaces. Then T (X) is isomorphic to N(Y ) if and
only if N(X) is isomorphic to T (Y ).

Proof. Choose an isometry
⊕2

i=0H
2i(X,Z) ∼= U⊕4 under which H2(X,Z) ∼= U⊕3 coincides

with the first three copies of U . With this identification, we have

N(X) = NS(X)⊕ U, T (X) = NS(X)⊥U
⊕3

.

Make the same choice for Y so that similar identifications hold for it. If T (X) ∼= N(Y ), then

NS(X)⊥U
⊕3

= T (X) ∼= N(Y ) = NS(Y )⊕ U.

This corresponds to (4) in Definition-Lemma 2.2 with M = NS(X) and N = NS(Y ). Con-
dition (5) of the same lemma then yields NS(Y )⊥U

⊕3 ∼= NS(X)⊕ U. It follows that

N(X) = NS(X)⊕ U ∼= NS(Y )⊥U
⊕3

= T (Y )

establishing N(X) ∼= T (Y ). The proof for the converse is similar.

2.3 Lattice-polarization and complex moduli We now introduce lattice-polarized
abelian surfaces, in analogy with Dolgachev’s lattice-polarized K3 surfaces [Dol96]. The key
difference is that the marking is taken on the first cohomology group rather than the second,
since the period of an abelian surface does not uniquely determine the surface itself.

LetM ⊆ Λ be a primitive sublattice of signature (1, r−1). We say that a marked abelian
surface (X,µ) is M-polarized if

• the marking µ : H1(X,Z) → L is admissible, and

• under the isometry ∧2µ : H2(X,Z) → Λ, we have (∧2µ)−1(M) ⊆ NS(X).

Fix a vector h ∈M ⊗ R with h2 > 0. We say that (X,µ) is (M,h)-polarized if, in addition,

• the class (∧2µ)−1(h) ∈ NS(X) is ample.

For each pair (M,h) as above, we define a functor

MM,h : (Complex analytic varieties)op −→ Set

which maps a space S to the set of isomorphism classes of marked families of abelian surfaces
(π : X → S, µ) such that for each s ∈ S, the fiber (Xs, µs) is an (M,h)-polarized abelian
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surface. Here, two such families (π : X → S, µ) and (π′ : X ′ → S, µ′) are said to be isomor-
phic if there exists an S-isomorphism f : X → X ′ such that for any s ∈ S, the following
diagram commutes:

NS(Xs)

M

(∧2µs)
−1
∣∣
M

44

(∧2µ′s)
−1
∣∣
M

**

NS(X ′
s)

f∗s

∣∣
NS(X′

s)

OO

We now proceed to construct the coarse moduli space for the functor MM,h under the
assumption that the lattice M ⊆ Λ satisfies Condition ♢.

Let M⊥ ⊆ Λ denote the orthogonal complement of M , and consider the period domain

DM :=
{
[v] ∈ P

(
M⊥ ⊗ C

) ∣∣ v · v = 0, v · v > 0
}
.

This domain has two connected component, distinguished by the orientation of the positive-
definite plane ⟨Re(v), Im(v)⟩ ⊆M⊥ ⊗ R. It carries a natural action of the discrete group

ΓM := {ϕ ∈ SO(Λ) | ϕ|M = idM}.

Let SO+(Λ) ⊆ SO(Λ) be the index-two subgroup preserving the orientation of positive-
definite 3-planes in Λ⊗ R. Then the subgroup

Γ+
M := ΓM ∩ SO+(Λ)

preserves each connected component of DM .
In what follows, for a marked complex torus (X,µ), we denote by

p(X,µ) ∈ B ⊆ P(Λ⊗ C)

its period, namely the point representing the image of the line H2,0(X) ⊆ H2(X,C) under
the isometry

∧2µ : H2(X,C) −→ Λ⊗ C.
Recall that, by Lemma 2.1, every p ∈ B is the period of some marked complex torus (X,µ),
and there can be written as p = p(X,µ).

Lemma 2.4. Let M ⊆ Λ be a primitive sublattice of signature (1, r − 1). Then

DM = { p(X,µ) ∈ D | (X,µ) is M-polarized }

Proof. Let (X,µ) be an M -polarized abelian surface. By definition, µ is admissible and
satisfies (∧2µ)−1(M) ⊆ NS(X). The former condition implies p(X,µ) ∈ D by Lemma 2.1,
and the latter ensures p(X,µ) ∈ DM . Hence,

DM ⊇ { p(X,µ) ∈ D | (X, µ) is M -polarized }.

Conversely, every p ∈ DM ⊆ B is the period of some marked complex torus (X,µ). The
condition p ∈ DM implies

H2,0(X) ⊆ (∧2µ)−1(M)⊥, or equivalently, NS(X) ⊇ (∧2µ)−1(M).

Thus (X,µ) is an M -polarized abelian surface. This proves the reverse inclusion.
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Lemma 2.5. Let M ⊆ Λ be a primitive sublattice of signature (1, r − 1) satisfying Condi-
tion ♢, and fix a vector h ∈M ⊗R with h2 > 0. Then the two connected components of DM

correspond precisely to the subsets

D+
M := {p(X,µ) ∈ DM | (X,µ) is (M,h)-polarized},

D−
M := {p(X,µ) ∈ DM | (X,µ) is (M,−h)-polarized} .

Proof. Lemma 2.4 asserts that DM consists precisely of the periods of M -polarized abelian
surfaces, so the two subsets can be identified respectively as

D+
M =

{
p(X,µ) ∈ DM

∣∣ (∧2µ)−1(h) ∈ NS(X) is ample
}
,

D−
M =

{
p(X,µ) ∈ DM

∣∣ (∧2µ)−1(h) ∈ NS(X) is anti-ample
}
.

For every p(X,µ) ∈ DM , the class (∧2µ)−1(h) ∈ NS(X) is positive, and hence is either ample
or anti-ample. Thus the subsets D+

M and D−
M are disjoint, and their union is all of DM . Both

subsets are open, since (anti-)ampleness is an open condition in families. Consequently, if
each subset is non-empty, they are exactly the two connected components of DM . Hence, to
complete the proof, it remains to construct M -polarized abelian surfaces (X,µ) and (X ′, µ′)
such that (∧2µ)−1(h) is ample and (∧2µ′)−1(h) is anti-ample.

Let (X,µ : H1(X,Z) → L) be an M -polarized abelian surface, and first consider the case
where (∧2µ)−1(h) is ample. Since M satisfies Condition ♢, it admits a primitive embedding
into U⊕2, which in turn embeds into U⊕3 uniquely up to the action of O(U⊕3). Consider the
isometry acting as −id on the U⊕2 containing M and trivially on the remaining copy of U .
This isometry has determinant 1 and preserves the orientation of positive 3-planes in Λ. By
[Shi78, Lemma 1], it is therefore induced by an admissible isomorphism of L. Composing µ
with this isomorphism yields a new marking µ′ under which M is still mapped into NS(X),
but h is sent to an anti-ample class. The same argument applies when (∧2µ)−1(h) is anti-
ample. This completes the proof.

Lemma 2.6. Retain the hypothesis of Lemma 2.5, and let D+
M ⊆ DM be the connected

component specified there. Then there is a bijection

MM,h(Spec(C)) ∼= D+
M/Γ

+
M .

Proof. If two (M,h)-polarized abelian surfaces (X1, µ1) and (X2, µ2) are isomorphic, then
by definition there exists an isomorphism f : X1 → X2 such that

(∧2µ1)
−1
∣∣
M

= f ∗∣∣
NS(X2)

◦ (∧2µ2)
−1
∣∣
M
. (2.1)

The induced isomorphism
f ∗ : H2(X2,C) −→ H2(X1,C)

preserves the Hodge structure and therefore maps H2,0(X2) to H
2,0(X1). In particular, the

periods of the two surfaces satisfy

p(X1, µ1) = ∧2µ1(H
2,0(X1))

= ∧2µ1 ◦ f ∗(H2,0(X2))

= ∧2µ1 ◦ f ∗ ◦ (∧2µ2)
−1 ◦ ∧2µ2(H

2,0(X2))

= ∧2µ1 ◦ f ∗ ◦ (∧2µ2)
−1(p(X2, µ2)).

11



2.3 LATTICE-POLARIZATION AND COMPLEX MODULI

Let us abbreviate this by writing

p(X1, µ1) = ϕ(p(X2, µ2)), ϕ = ∧2µ1 ◦ f ∗ ◦ (∧2µ2)
−1 ∈ SO(Λ).

Relation (2.1) implies that ϕ acts trivially on M , and hence ϕ ∈ ΓM . In particular, ϕ
fixes one positive direction since M has signature (1, r−1). Moreover, ϕ carries the oriented
positive plane spanned by the real and imaginary parts of p(X2, µ2) to the corresponding
plane given by p(X1, µ1). Thus ϕ preserves the orientation of positive 3-planes in Λ ⊗ R,
and therefore ϕ ∈ Γ+

M . Consequently, sending an abelian surface to its period induces a
well-defined map

MM,h(Spec(C)) −→ D+
M/Γ

+
M .

This map is surjective, since every point on D+
M arises as the period of an (M,h)-polarized

abelian surface. It remains to show that the map is injective.
Assume that two (M,h)-polarized abelian surfaces (X1, µ1) and (X2, µ2) are mapped to

the same point in D+
M/Γ

+
M . Then p(X1, µ1) = ϕ(p(X2, µ2)) for some ϕ ∈ Γ+

M . Consider the
isometry

g : H2(X2,Z)
∧2µ2

// Λ
ϕ
// Λ

(∧2µ1)−1

// H2(X1,Z).

The relation p(X1, µ1) = ϕ(p(X2, µ2)) implies that g preserves the Hodge structure. More-
over, since ϕ ∈ SO(Λ), we have det(g) = 1 in the sense of [Shi78, Equation (1.9)]. By
[Shi78, §4, Theorem 1], after replacing ϕ by −ϕ if necessary, the isometry g is induced by
an isomorphism f : X1 → X2. Because ϕ acts trivially on M , the isomorphism f satisfies
relation (2.1). Hence (X1, µ1) and (X2, µ2) are isomorphic. This proves injectivity, which
completes the proof.

Definition 2.7. Let D+
M ⊆ DM be the connected component specified in Lemma 2.5 for

a primitive sublattice M ⊆ Λ of signature (1, r − 1) satisfying Condition ♢ and a vector
h ∈M ⊗ R with h2 > 0. We define

Mcpx(M) := D+
M/Γ

+
M .

For an abelian surface X, we further define

Mcpx(X) := Mcpx(NS(X)).

Note that Mcpx(M) is a quasi-projective variety by Baily–Borel [BB66], whose dimension
is equal to 4− rank(M). In particular, if X is an abelian surface with Picard number ρ(X),
then Mcpx(X) is a quasi-projective variety of dimension 4− ρ(X).

Theorem 2.8. The quotient Mcpx(M) = D+
M/Γ

+
M defined above is a coarse moduli space for

the moduli functor MM,h.

Proof. We begin by constructing a natural transformation of functors

η : MM,h(−) −→ Hom(−, D+
M/Γ

+
M).

Let (π : X → S) ∈ MM,h(S) be a family of (M,h)-polarized abelian surfaces. Since B is a
fine moduli space of marked complex tori, this family is the pullback of the universal family

12



2.3 LATTICE-POLARIZATION AND COMPLEX MODULI

over B along a unique morphism f : S → B. Moreover, since all fibers are (M,h)-polarized,
the image of f lies in D+

M ⊆ B. Thus for each base space S, we obtain a map

ηS : MM,h(S) −→ Hom(S, D+
M/Γ

+
M)

sending a family (π : X → S) to the composition

S
f
// D+

M
// D+

M/Γ
+
M .

This construction is functorial in S, providing the desired natural transformation.
To prove that D+

M/Γ
+
M is a coarse moduli space, we need to verify that the natural

transformation η satisfies the following properties:

(i) The following map is bijective:

ηSpec(C) : MM,h(Spec(C)) −→ Hom(Spec(C), D+
M/Γ

+
M)

(ii) For every natural transformation τ : MM,h(−) −→ Hom(−, N), there exists a unique
morphism ψ : D+

M/Γ
+
M −→ N such that the following diagram commutes:

MM,h(−)
η
//

τ
((

Hom(−, D+
M/Γ

+
M)

ψ ◦−
��

Hom(−, N)

(2.2)

The first property is established in Lemma 2.6, so it remains to verify the second.
More specifically, we need to construct the morphism ψ. To this end, consider the family

of (M,h)-polarized abelian surfaces πM : U+
M → D+

M obtained by the pullback of the universal
family over B. Applying τ to πM yields a morphism ψ′ : D+

M → N. Every isometry ϕ ∈ Γ+
M

corresponds to an automorphism ϕ : D+
M → D+

M , giving rise to the commutative diagram

MM,h(D+
M)

ϕ∗

��

τD+
M // Hom(D+

M , N)

ϕ ◦−
��

MM,h(D+
M)

τD+
M // Hom(D+

M , N).

Since ϕ∗ leaves the isomorphism class of πM invariant, it follows that ϕ ◦ ψ′ = ψ′ from the
diagram. Hence, ψ′ is invariant under the action of Γ+

M , and consequently descends to a
morphism ψ : D+

M/Γ
+
M → N. It is straightforward to verify that diagram (2.2) commutes and

that ψ is uniquely determined. The details are left to the reader.

Remark 2.9. As pointed out by Alexeev and Engel [AE25], [Dol96, Theorem 3.1] is incorrect
under Dolgachev’s original definition of lattice-polarized K3 surfaces, which was corrected
in [AE25]. This issue does not arise for abelian surfaces, since they contain no (−2)-curves,
and hence their ample cones coincide with positive cones.

13



MIRROR PAIRS OF ABELIAN SURFACES

3 Mirror pairs of abelian surfaces

Mirror symmetry naturally identifies the complex moduli space of an abelian surface with the
stringy Kähler moduli space of its mirror partner. In this section, we construct the stringy
Kähler moduli space via Bridgeland stability conditions, paralleling Bayer and Bridgeland’s
construction for K3 surfaces [BB17, Section 7], and then establish this identification. We next
introduce an involution on the stringy Kähler moduli space which, assuming the existence
of a mirror partner, recovers the involution on the complex moduli space sending an abelian
surface to its dual. Finally, we develop criteria for existence of mirror partners and for
determining when two abelian surfaces form a mirror pair.

3.1 Stringy Kähler moduli spaces We begin by recalling the necessary background
on Bridgeland stability conditions for abelian surfaces. For general definitions and further
details, the reader is referred to [Bri08, Section 15], or more recent reference such as [FLZ22,
Section 2].

Consider an abelian surface X and denote by Db(X) the bounded derived category of
coherent sheaves on it. A numerical stability condition on Db(X) is a pair σ = (Z,P) which
consists of the following data.

Central charge: A group homomorphism

Z : K0(X) −→ C,

with K0(X) denoting the Grothendieck group of Db(X), factoring through the Mukai
vector v : K0(X) −→ N(X). It can be expressed in the form Z(−) = (γZ , v(−)) for
some γZ ∈ N(X)⊗ C.

Slicing: A collection of full additive subcategories P(θ) ⊆ Db(X), one for each real
number θ, subject to the following conditions:

• P(θ + 1) = P(θ)[1],

• Hom(A1, A2) = 0 for all Ai ∈ P(θi), i = 1, 2, with θ1 > θ2, and

• every nonzero object E ∈ Db(X) can be filtered into exact triangles

0 // E1
//

��

E2
//

��

· · · // En−1
// E

��

A1

\\

A2

^^

An

``

where Ai ∈ P(θi) and θ1 > θ2 > · · · > θn.

An object of P(θ) is said to be semistable of phase θ.

The central charge and slicing are required to be compatible in the sense that, for every
nonzero object E ∈ P(θ), its central charge satisfies Z(E) ∈ R>0 e

iπθ. In addition, the
central charge needs to satisfy the following property.

14



3.1 STRINGY KÄHLER MODULI SPACES

Support property: There exists a quadratic form Q on N(X)⊗ R that is negative-
definite on the subspace where Z vanishes and Q(v(E)) ≥ 0 for every semistable E.

The set of numerical stability conditions Stab(X) carries the structure of a complex
manifold, which a priori may have several components. For abelian surfaces, since there is
no spherical object, the space Stab(X) is connected and simply connected due to [HMS08,
Theorem 3.15]. Within this space, the reduced stability conditions, namely those whose
central charges Z(−) = (γZ , v(−)) satisfy γZ · γZ = 0, form a submanifold

Stabred(X) ⊆ Stab(X).

The space Stab(X) carries a right action of G̃L
+

2 (R), the universal cover of GL+
2 (R), and a

left action of AutDb(X), with the two actions commuting. Under these actions, Stabred(X)
is preserved by the subgroup C ⊆ G̃L

+

2 (R) and by the entire AutDb(X). We denote by

Aut0D
b(X) ⊆ AutDb(X).

the subgroup of autoequivalences acting trivially on Stab(X). It is generated by tensoring
with degree-zero line bundles and by pullbacks of automorphisms of X acting trivially on
the total cohomology H∗(X,Z).

An autoequivalence is called Calabi–Yau if the induced Hodge isometry onHev(X,Z) acts
trivially on the transcendental lattice T (X), or equivalently, if it respects the Serre duality
pairing [BB17, Definition 7.1 and Appendix]. Such autoequivalences form a subgroup

AutCY Db(X) ⊆ AutDb(X).

Note that Aut0D
b(X) ⊆ AutCY Db(X). We denote the corresponding quotient by

AutCYD
b(X) := AutCY Db(X)/Aut0D

b(X).

Definition 3.1. The stringy Kähler moduli space of an abelian surface X is defined as

MKäh(X) := (Stabred(X)/C)
/ (

AutCYD
b(X)/Z[2]

)
.

The space MKäh(X) admits a more concrete description. To a stability condition with
central charge Z(−) = (γZ , v(−)), one can associate a class [γZ ] ∈ P(N(X) ⊗ C). As a
consequence of [Bri08, Theorem 15.2], this assignment induces an isomorphism

Stabred(X)/C ∼ // Q+(X) ⊆ P(N(X)⊗ C). (3.1)

Here, Q+(X) denotes the connected component of the period domain

Q(X) := {[γ] ∈ P(N(X)⊗ C) | γ · γ = 0, γ · γ > 0}

containing the class
[
eih = 1 + ih− 1

2
h2
]
for some ample h ∈ NS(X) ⊗ R. This component

is preserved by the action of SO+(N(X))∗, the special orthogonal group of N(X) preserving
the orientation of positive 2-planes in N(X) ⊗ R and acting trivially on the discriminant
group N(X)∗/N(X).

15



3.2 MIRROR PAIRS AND SYMPLECTIC DUALS

Proposition 3.2. For an abelian surface X, there is a natural isomorphism

MKäh(X) ∼= Q+(X) / SO+(N(X))∗.

Proof. There is an isomorphism Stabred(X)/C ∼= Q+(X) from (3.1). It remains to show that

AutCYD
b(X)/Z[2] ∼= SO+(N(X))∗. (3.2)

Consider the homomorphism

AutDb(X) −→ OHdg(H
ev(X,Z))

induced by the actions of autoequivalences on the even cohomology. Its kernel is isomorphic
to Aut0D

b(X)×Z[2]. By [Yos09, Proposition 4.5], its image is SO+
Hdg(H

ev(X,Z)), the group
of Hodge isometries of Hev(X,Z) with determinant 1 that preserve the orientation of positive
4-planes in Hev(X,R).

Restricting the above homomorphism to AutCY Db(X) yields the identification

Im
(
AutCY Db(X) → OHdg(H

ev(X,Z))
)
=

{
ϕ ∈ SO+

Hdg(H
ev(X,Z)) | ϕ|T (X) = idT (X)

}
.

The left-hand side equals AutCYD
b(X)/Z[2]. Moreover, restricting a Hodge isometry of the

even cohomology to N(X) defines an injection{
ϕ ∈ SO+

Hdg(H
ev(X,Z)) | ϕ|T (X) = idT (X)

}
↪−→ SO+(N(X))∗.

This map is surjective, and hence an isomorphism, since every element of SO+(N(X))∗

can be extended to Hev(X,Z) acting trivially on T (X); see, for example, [Huy16, Proposi-
tion 14.2.6]. This establishes the desired isomorphism (3.2).

Note that for an abelian surface X with Picard number ρ(X), the space MKäh(X) is a
quasi-projective variety of dimension ρ(X) by Proposition 3.2 and Baily–Borel [BB66].

Remark 3.3. As complex varieties, one can replace AutCYD
b(X) with AutCY Db(X) in

Definition 3.1 and write

MKäh(X) = (Stabred(X)/C)
/ (

AutCY Db(X)/Z[2]
)
,

making it compatible with Bayer and Bridgeland’s corresponding definition for K3 surfaces
[BB17, Section 7]. However, this formulation is not suitable for abelian surfaces if one wants
to regard MKäh(X) as an orbifold, since the subgroup Aut0D

b(X) ⊆ AutCY Db(X) that
fixes all stability conditions is non-discrete.

3.2 Mirror pairs and symplectic duals We now show that, if an abelian surface X
admits a mirror partner Y , then there exist natural isomorphisms

Mcpx(X) ∼= MKäh(Y ) and MKäh(X) ∼= Mcpx(Y ).
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3.2 MIRROR PAIRS AND SYMPLECTIC DUALS

Proof of Theorem 1.2. Recall from Definition 2.7 and the beginning of Section 2.3 that

Mcpx(X) = D+
NS(X)/Γ

+
NS(X)

where D+
NS(X) is one of the connected components of

DNS(X) =
{
[v] ∈ P

(
NS(X)⊥Λ ⊗ C

) ∣∣ v · v = 0, v · v > 0
}

∼= {[v] ∈ P (T (X)⊗ C) | v · v = 0, v · v > 0}

and
Γ+
NS(X) = {ϕ ∈ SO+(Λ) | ϕ|NS(X) = idNS(X)}.

On the other hand, Proposition 3.2 shows that

MKäh(Y ) ∼= Q+(Y ) / SO+(N(Y ))∗

where Q+(Y ) is one of the connected components of

Q(Y ) = {γ ∈ P(N(Y )⊗ C) | γ · γ = 0, γ · γ > 0}.

and SO+(N(Y ))∗ is the group of isometries of N(Y ) with determinant 1 that preserve the
orientation of positive 2-planes in N(Y )⊗ R and act trivially on N(Y )∗/N(Y ).

Since Y is a mirror partner of X, there is an isometry T (X) ∼= N(Y ), which in turn
induces an isomorphism

D+
NS(X)

∼ // Q+(Y ). (3.3)

Moreover, every element of Γ+
NS(X) acts on NS(X)⊥Λ ∼= T (X), which defines an injection

Γ+
NS(X) ↪−→ SO+(T (X))∗.

This map is surjective, and hence an isomorphism, since every element of SO+(T (X))∗ can
be extended to Λ acting trivially on NS(X) [Huy16, Proposition 14.2.6]. Combining this
with the isometry T (X) ∼= N(Y ) yields an isomorphism

Γ+
NS(X)

∼ // SO+(N(Y ))∗

such that map (3.3) is equivariant with respect to it. This establishes the isomorphism

Mcpx(X) ∼= MKäh(Y ).

The other isomorphism MKäh(X) ∼= Mcpx(Y ) is induced by the isometry N(X) ∼= T (Y ) in
a similar way.

Let X be an abelian surface X and consider the set of complexified Kähler classes

K(X) := {ω ∈ NS(X)⊗ C | Im(ω) ∈ Amp(X)} .
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3.2 MIRROR PAIRS AND SYMPLECTIC DUALS

Taking symplectic duals defines an involution

ι : K(X) −→ K(X) : ω 7−→ ω

−1
2
ω2

that reverses the Kähler volume. On the other hand, the exponential map defines an iso-
morphism

K(X) −→ Q+(X) : ω 7−→
[
exp(ω) = 1 + ω +

1

2
ω2

]
.

Via this identification, the involution ι induces an involution on Q+(X). Let us prove that
this descends to an involution on the stringy Kähler moduli space

MKäh(X) ∼= Q+(X) / SO+(N(X))∗

and that, when X admits a mirror partner Y , the induced involution on Mcpx(Y ) pairs
NS(Y )-polarized abelian surfaces whose underlying abelian surfaces are dual to each other.

Lemma 3.4. The involution ι induces an involution on MKäh(X) given by the action of an
involution in O+(N(X))∗\SO+(N(X))∗, which in turn corresponds to the covering involution
of the double cover

MKäh(X) ∼= Q+(X) / SO+(N(X))∗ 2:1 // Q+(X) /O+(N(X))∗.

Proof. Let us denote a vector in N(X) as (r,D, s) with respect to the decomposition

N(X) = H0(X,Z)⊕ NS(X)⊕H4(X,Z)

With this notation, the involution on Q+(X) induced by ι maps

[exp(ω)] =

[(
1, ω,

1

2
ω2

)]
∈ P(N(X)⊗ C)

to the class [
exp

(
ω

−1
2
ω2

)]
=

[(
1,

ω

−1
2
ω2
,
2

ω2

)]
=

[(
−1

2
ω2, ω,−1

)]
.

This involution corresponds to the isometry on N(X) that

• acts trivially on NS(X), and

• swaps the two summands of H0(X,Z)⊕H4(X,Z) = U(−1) followed by −id.

This isometry has determinant −1, so it lies in O+(N(X))∗ \ SO+(N(X))∗. Thus the state-
ment follows.

Proof of Theorem 1.3. Let Y be a mirror partner of X. Fix an isometry T (Y ) ∼= N(X) and
consider the induced isomorphism

M : Mcpx(Y ) −→ MKäh(X).
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3.2 MIRROR PAIRS AND SYMPLECTIC DUALS

By Lemma 3.4, the involution ι induces an involution

D : MKäh(X) −→ MKäh(X)

such that the composition

M−1 ◦ D ◦ M : Mcpx(Y ) −→ Mcpx(Y )

is given by the action of an involution in O+(T (Y ))∗ \ SO+(T (Y ))∗. As a consequence of
[Shi78, Theorem 2], such an isometry pairs NS(Y )-polarized abelian surfaces whose under-
lying abelian surfaces are dual to each other. This completes the proof.

For an (M,h)-polarized abelian surface (X,µ), it is not a priori clear whether the dual
abelian surface

X̂ := H1(X,OX)/H
1(X,Z)

admits a marking µ̂ such that (X̂, µ̂) is again (M,h)-polarized. Theorem 1.3 (b) implies
that this is indeed the case when (X,µ) ∈ Mcpx(Y ) for some abelian surface Y admitting a
mirror partner. In what follows, we we prove that the same conclusion holds whenever M
satisfies Condition ♢.

Corollary 3.5. Let M ⊆ Λ be a primitive sublattice of signature (1, r− 1) satisfying Condi-
tion ♢, and fix a vector h ∈ M ⊗ R with h2 > 0. Then Mcpx(M) admits an involution that
pairs (M,h)-polarized abelian surfaces whose underlying abelian surfaces are dual to each
other.

We present two proofs. The first is short but non-constructive. The second is constructive
and is based on Shioda’s computation in [Shi78].

Proof I. For an abelian surface Y underlying a very general member of Mcpx(M), we have
that M ∼= NS(Y ), so the space Mcpx(M) can be naturally identified with Mcpx(Y ). By
hypothesis, M satisfies Condition ♢, so there exists a primitive sublattice N ⊆ Λ, satisfying
the same condition, such that M⊥ ∼= N ⊕U . Let X be an abelian surface underlying a very
general member of Mcpx(N). Then N ∼= NS(X), which implies

N(X) ∼= N ⊕ U ∼= M⊥ ∼= T (Y ).

Therefore, X is a mirror partner of Y . Thus Mcpx(Y ) ∼= MKäh(X) by Theorem 1.2. The
statement then follows by applying Theorem 1.3 (b).

Proof II. Let (X,µ) be an (M,h)-polarized abelian surface in Mcpx(M), and let X̂ be the
abelian surface dual to X. Our goal is to find a canonical marking

µ̂ : H1(Ĥ,Z) −→ L

such that (X̂, µ̂) is (M,h)-polarized. First, the hypothesis asserts thatM admits a primitive
embedding into the sum of two copies of U in Λ ∼= U⊕3. Consider the two isometries:

• Let ϕ ∈ O+(Λ) be the isometry that acts trivially on the U⊕2 containing M and swaps
the standard basis vectors of the remaining copy of U .
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• Let ψ ∈ O+(Λ) be the isometry that acts as −id on the U⊕2 containing M and acts
trivially on the remaining copy of U .

Note that det(ϕ) = −1 and det(ψ) = 1. Moreover, ψ = ∧2ν where ν is an admissible
automorphism of L that relabels the basis elements.

By [Shi78, Lemma 3], there exists a canonical isomorphism

α : H2(X̂,Z) −→ H2(X,Z)

that preserves the periods and satisfies det(α) = −1. Consider the composition

H2(X̂,Z) α // H2(X,Z) ∧2µ
// Λ.

Since (X,µ) is M -polarized and α preserves periods, the preimage of M under this compo-

sition lies in NS(X̂). By [Shi78, Lemma 1], the composition

H2(X̂,Z) α // H2(X,Z) ∧2µ
// Λ

either ϕ or −ϕ
// Λ (3.4)

is equal to ∧2µ̂ for a unique admissible marking

µ̂ : H1(Ĥ,Z) −→ L.

Note that (∧2µ̂)−1(M) ⊆ NS(X̂).

• If (∧2µ̂)−1(h) is ample, then (X̂, µ̂) is (M,h)-polarized.

• If (∧2µ̂)−1(h) is anti-ample, we further compose (3.4) with ψ. The resulting composi-

tion equals ∧2µ̂′ with µ̂′ = ν ◦ µ̂. Then (X̂, µ̂′) is (M,h)-polarized.

This completes the proof.

Remark 3.6. The isometry on N(X) = H0(X,Z) ⊕ NS(X) ⊕H4(X,Z) that acts trivially
on NS(X) and swaps the two summands of H0(X,Z) ⊕ H4(X,Z) followed by −id also
appears in the context of K3 surfaces. In that setting, it corresponds to the cohomological
action of the spherical twist along the structure sheaf. In contrast, abelian surfaces have no
spherical object, and such an isometry cannot be realized as the cohomological action of any
autoequivalence [Yos09, Proposition 4.5].

3.3 Existence of mirror partners We now show that an abelian surface X with Picard
number ρ(X) admits a mirror partner if and only if

• ρ(X) ≤ 2, or

• ρ(X) = 3 and NS(X) ∼= Z(−2n)⊕ U for some positive integer n.
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Proof of Theorem 1.6. Suppose Y is a mirror partner of X. Then

NS(X)⊥Λ ∼= T (X) ∼= N(Y ) ∼= NS(Y )⊕ U.

That is, the lattices M := NS(X) and N := NS(Y ) satisfy Lemma 2.2 (4). The conclusion
then follows from Lemma 2.2 (3). Conversely, if M = NS(X) satisfies Lemma 2.2 (3), then
there exists a primitive sublattice N ⊆ Λ such that N⊥Λ ∼= M ⊕U by Lemma 2.2 (5). Note
that N satisfies Condition ♢. Take a very general Y ∈ Mcpx(N). Then NS(Y ) ∼= N , and

T (Y ) ∼= N⊥Λ ∼= M ⊕ U ∼= N(X).

Hence Y is a mirror partner of X.

For an abelian surface X of Picard number 1, we have NS(X) ∼= Z(2n) for some positive
integer n. Following the computation in the proof of [Dol96, Theorem 7.1], one can verify
that its stringy Kähler moduli space is

MKäh(X) ∼= H/Γ0(n),

the quotient of the upper half-plane by the Hecke congruence subgroup

Γ0(n) =

{(
a b
c d

)
∈ PSL2(Z)

∣∣∣∣ c ≡ 0 (mod n)

}
.

In the setting of K3 surfaces, the corresponding moduli space is constructed by first
removing from Q+(X) the hyperplane sections orthogonal to (−2)-vectors. That is, one
considers

Q+
0 (X) = Q+(X)

∖ ⋃
δ∈N(X), δ2=−2

δ⊥,

and then takes the quotient by O+(N(X))∗ instead of SO+(N(X))∗. In the case of Picard
number 1, this yields a quotient H0/Γ+

0 (n), where H0 ⊆ H is a suitable open subset, and
the subgroup Γ+

0 (n) ⊆ PSL(2,R) is the extension of Γ0(n) by the Fricke involution

wn =

(
0 −1/

√
n√

n 0

)
.

Returning to the setting of abelian surfaces, a mirror partner Y of an abelian surface
of Picard number 1 has NS(Y ) ∼= U ⊕ Z(−2n). In particular, NS(Y ) contains a hyperbolic
plane U , so Y is isomorphic to a product of elliptic curves E ×E ′. Moreover, the summand
Z(−2n) ⊆ NS(Y ) implies the existence of a cyclic isogeny ϕ : E → E ′ of degree n; see,
for example, the proof of [Ma11, Proposition 4.1]. It is well known that H/Γ0(n) is the
coarse moduli space of isomorphism classes of pairs (E,A), where E is an elliptic curve and
A ⊆ E is a cyclic subgroup of order n [DS05, Theorem 1.5.1]. This is compatible with the
isomorphisms

Mcpx(Y ) ∼= MKäh(X) ∼= H/Γ0(n).

Mirror symmetry for abelian surfaces of Picard number 2 is more subtle than in the cases
of Picard number 1 or 3. In contrast to those cases, the Néron–Severi lattice of a mirror
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3.3 EXISTENCE OF MIRROR PARTNERS

partner is not, in general, uniquely determined by that of the original surface. In what
follows, we first establish a lemma that characterizes mirror pairs in terms of discriminant
forms. This will be used in Section 4 to classify self-mirror abelian surfaces. We then give a
criterion for deciding when two abelian surfaces have the same mirror.

Lemma 3.7. Let M,N ⊆ U⊕3 be primitive sublattices of signatures (1, r − 1), (1, s − 1),
respectively, with r + s = 4, and let (AM , qM), (AN , qN) be their discriminant forms. Then
the following conditions are equivalent:

(1) M⊥ ∼= N ⊕ U .

(2) N⊥ ∼= M ⊕ U .

(3) There exists a primitive embedding M ↪→ U⊕2 whose orthogonal complement is iso-
morphic to N .

(4) There exists a primitive embedding N ↪→ U⊕2 whose orthogonal complement is iso-
morphic to M .

(5) AM and AN are anti-isometric, that is, there exists an isomorphism f : AM → AN
such that −qM = qN ◦ f .

In particular, two abelian surfaces X and Y are mirror partners if and only if M := NS(X)
and N := NS(Y ) satisfy any of the above conditions.

Proof. Suppose M⊥ ∼= N ⊕ U . Since all primitive embeddings U ↪→ U⊕3 are equivalent
under the action of O(U⊕3), we may identify the U -summand of M⊥ ∼= N ⊕ U with one
of the U -summands of U⊕3. With this identification, M = (M⊥)⊥ appears as a primitive
sublattice of the remaining U⊕2-summand, and with N as its orthogonal complement. This
proves (1) =⇒ (3).

Conversely, by identifying the codomain of the given embedding M ↪→ U⊕2 with a U⊕2-
summand of U⊕3, we obtain a primitive embeddingM ↪→ U⊕3 whose orthogonal complement
is isomorphic to N ⊕ U . Hence (1) ⇐⇒ (3). The proof of (2) ⇐⇒ (4) is similar.

By [Nik79, Corollary 1.6.2], two even lattices M and N occur as primitive and mutually
orthogonal sublattices of an even unimodular lattice, which in our case is U⊕2, if and only
if there exists an isomorphism f : AM → AN satisfying −qM = qN ◦ f . This gives the
equivalences (3) ⇐⇒ (5) ⇐⇒ (4).

The last statement then follows from the definition of mirror partners.

Proposition 3.8. LetM1 andM2 be even lattices of signature (1, 1) with discriminant forms
(AM1 , qM1) and (AM2 , qM2). Then the following statements are equivalent:

(1) There exists an even lattice N with primitive embeddings ιi : N ↪→ U⊕2, i = 1, 2, such
that Mi

∼= ιi(N)⊥.

(2) There exists an isomorphism f : AM1 → AM2 such that qM1 = qM2 ◦ f .

(3) There exists an isomorphism M1 ⊕ U ∼= M2 ⊕ U .
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SELF-MIRROR ABELIAN SURFACES

(4) The lattices M1 and M2 are stably equivalent, that is, M1 ⊕M ′
1
∼= M2 ⊕M ′

2 for some
unimodular lattices M ′

1 and M ′
2.

In particular, two abelian surfaces X1 and X2 of Picard number 2 share the same mirror
partner if and only if NS(X1) and NS(X2) are stably equivalent.

Proof. The implication (1) =⇒ (2) follows from Lemma 3.7. To prove the converse, choose
any primitive embedding M1 ↪→ U⊕2, and let N be its orthogonal complement. Then AM1

and AN are anti-isometric, and hence AM2 is also anti-isometric to AN . By Lemma 3.7
again, the lattice N admits a primitive embedding into U⊕2 with orthogonal compliment
isomorphic to M2. This proves (1) ⇐⇒ (2).

Under the situation of (1), if we identify the codomain of ιi with a U⊕2-summand of U⊕3,
then the orthogonal complement of N becomes Mi ⊕ U . Since N has signature (1, 1), the
two embeddings of N into U⊕3 are equivalent under the action of O(U⊕). Applying such an
action yields an isomorphism M1 ⊕ U ∼= M2 ⊕ U . This shows (1) =⇒ (3).

The implication (3) =⇒ (4) is immediate, and the equivalence (4) ⇐⇒ (2) follows from
[Nik79, Theorem 1.3.1]. Together, these implications establish the equivalence of all four
statements.

Remark 3.9. Consider the set of equivalence classes of abelian surfaces of Picard number 2,
where each class [X] consists of those X ′ with NS(X ′) stably equivalent to NS(X). By
Proposition 3.8, mirror symmetry defines an involution on this set. Note that if two even
latticesM1,M2 ⊆ U⊕3 of signature (1, 1) are stably equivalent, then their orthogonal comple-
ments are equivalent under the action of O(U⊕3). By the construction of complex moduli,
this yields a canonical isomorphism Mcpx(M1) ∼= Mcpx(M2). Hence, we have canonical
isomorphisms Mcpx(X1) ∼= Mcpx(X2) for all X1, X2 in the same equivalence class.

4 Self-mirror abelian surfaces

The goal of this section is to classify self-mirror abelian surfaces, namely those abelian
surfaces X satisfying T (X) ∼= N(X), in terms of the discriminant forms of their Néron–
Severi lattices. Note that in this case Mcpx(X) ∼= MKäh(X).

4.1 Anti-automorphisms on discriminant forms Let X be an abelian surface, and
denote by (A, q) the discriminant form of NS(X). By Lemma 3.7, X is self-mirror if and
only if there exists an automorphism

f : A −→ A such that q = −q ◦ f.

We call such a map f an anti-automorphism. For each prime p, the restriction of the
quadratic form q to the p-Sylow subgroup Ap ⊆ A takes the form

qp : Ap −→

{
2Q(p)/2Z, p ̸= 2,

Q(2)/2Z, p = 2,

where Q(p) ⊆ Q is the subset of rational numbers whose denominators are powers of p. Using
the Chinese Remainder Theorem, one can check that (A, q) admits an anti-automorphism
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4.1 ANTI-AUTOMORPHISMS ON DISCRIMINANT FORMS

if and only if each (Ap, qp) does. Hence, the problem reduces to checking the existence of
anti-automorphisms locally at each prime.

Since NS(X) has rank two in our setting, each local component (Ap, qp) has one of the
following forms by [Nik79, Proposition 1.8.1]:

• p is odd, Ap ∼= Z/pkZ for some integer k, and there exists an integer θ not divisible by
p such that

qp(a) =
2θa2

pk
for each a ∈ Ap.

Here a is an integer representing a ∈ Z/pkZ.

• p is odd, Ap ∼= (Z/pk1Z) ⊕ (Z/pk2Z) for some integers k1, k2, and there exist integers
θ1, θ2 not divisible by p such that

qp(a1, a2) =
2θ1a

2
1

pk1
+

2θ2a
2
2

pk2
for each (a1, a2) ∈ Ap.

Here a1, a2 are integers representing a1 ∈ Z/pk1Z and a2 ∈ Z/pk2Z.

• p = 2, A2
∼= Z/2kZ for some integer k, and there exists an odd integer θ such that

q2(a) =
θa2

2k
for each a ∈ A2.

Here a is an integer representing a ∈ Z/2kZ.

• p = 2, A2
∼= (Z/2k1Z)⊕ (Z/2k2Z) for some integers k1, k2, and there exist odd integers

θ1, θ2 such that

q2(a1, a2) =
θ1a

2
1

2k1
+
θ2a

2
2

2k2
for each (a1, a2) ∈ A2.

Here a1, a2 are integers representing a1 ∈ Z/2k1Z and a2 ∈ Z/2k2Z.

• p = 2, A2
∼= (Z/2kZ)⊕ (Z/2kZ) for some integer k, and there exists an odd integer θ

such that

q2(a1, a2) =
θa1a2
2k−1

for each (a1, a2) ∈ A2.

Here a1, a2 are integers representing a1, a2 ∈ Z/2kZ.

• p = 2, A2
∼= (Z/2kZ)⊕ (Z/2kZ) for some integer k, and there exists an odd integer θ

such that

q2(a1, a2) =
θ(a21 + a1a2 + a22)

2k−1
for each (a1, a2) ∈ A2.

Here a1, a2 are integers representing a1, a2 ∈ Z/2kZ.

In the following, we determine precisely when a given (Ap, qp) listed above admits an
anti-automorphism, starting from the case where p is odd.
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Lemma 4.1. Assume that p is odd, Ap ∼= Z/pkZ for some integer k, and there exists an
integer θ not divisible by p such that

qp(a) =
2θa2

pk
∈ 2Q(p)/2Z for each a ∈ Ap.

Then (Ap, qp) admits an anti-automorphism if and only if p ≡ 1 (mod 4).

Proof. An automorphism f : Z/pkZ → Z/pkZ is determined by f(1) = u, where p ∤ u. The
condition qp = −qp ◦ f is then equivalent to pk | u2 +1. It is a standard result in elementary
number theory that such an u exists if and only if p ≡ 1 (mod 4).

Lemma 4.2. Assume that p is odd, Ap ∼= (Z/pk1Z)⊕ (Z/pk2Z) for some integers k1, k2, and
there exist integers θ1, θ2 not divisible by p such that

qp(a1, a2) =
2θ1a

2
1

pk1
+

2θ2a
2
2

pk2
∈ 2Q(p)/2Z for each (a1, a2) ∈ Ap.

Then (Ap, qp) admits an anti-automorphism if and only if

• p ≡ 1 (mod 4), or

• p ≡ 3 (mod 4) and Ap ∼= (Z/pkZ)⊕ (Z/pkZ).

Proof. If p ≡ 1 (mod 4), then there exists an integer u such that pmax{k1,k2} | u2 + 1. The
automorphism

f : (Z/pk1Z)⊕ (Z/pk2Z) −→ (Z/pk1Z)⊕ (Z/pk2Z),

{
f(1, 0) = (u, 0),

f(0, 1) = (0, u),

then satisfies qp = −qp ◦ f . In the remaining part of the proof, we assume p ≡ 3 (mod 4).
First, we show the existence of an anti-isomorphism f forces k1 = k2. Assume instead

that k1 < k2, and write f(0, 1) = (u1, u2). Evaluating the relation −qp = qp ◦f at (0, 1) gives

−2θ2
pk2

=
2θ1u

2
1

pk1
+

2θ2u
2
2

pk2
(mod 2Z).

This implies p | u22 + 1, which is impossible when p ≡ 3 (mod 4). Hence k1 = k2.
Now we show that an anti-automorphism exists when k := k1 = k2. Consider the

quadratic form

qp : (Z/pkZ)⊕ (Z/pkZ) −→ 2Q(p)/2Z, qp(a1, a2) =
2θ1a

2
1

pk
+

2θ2a
2
2

pk
, p ∤ θ1θ2.

and a group homomorphism

f : (Z/pkZ)⊕ (Z/pkZ) −→ (Z/pkZ)⊕ (Z/pkZ),

{
f(1, 0) = (u11, u12),

f(0, 1) = (u21, u22).

For this map to be an anti-automorphism, it must satisfy −qp = qp ◦ f . A straightforward
computation shows that this holds if and only if the following conditions hold:
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4.1 ANTI-AUTOMORPHISMS ON DISCRIMINANT FORMS

(i) −qp(1, 0) = qp ◦ f(1, 0), equivalently, pk | (u211 + 1)θ1 + u212θ2,

(ii) −qp(0, 1) = qp ◦ f(0, 1), equivalently, pk | u221θ1 + (u222 + 1)θ2,

(iii) pk | u11u21θ1 + u12u22θ2.

(iv) f is an automorphism, equivalently, p ∤ u11u22 − u12u21.

It remains to find integers uij satisfying these conditions. We proceed by induction.

Base case k = 1. Consider the sets

A =
{
m2 ∈ Z/pZ

∣∣∣ m ∈ Z
}
, B =

{
n2θ1θ2 ∈ Z/pZ

∣∣∣ n ∈ Z
}
.

Since p ∤ θ1θ2, we have |A| = |B| = p+1
2
. By the Cauchy–Davenport theorem, their sum

A+B =
{
m2 + n2θ1θ2 ∈ Z/pZ

∣∣∣ m,n ∈ Z
}

satisfies |A + B| ≥ min {p, |A|+ |B| − 1} = p. Hence A + B = Z/pZ. In particular, there
exists integers m and n such that

p | m2 + n2θ1θ2 + 1. (4.1)

Choose
u11 = u22 = m, u12 = nθ1, u21 = −nθ2.

Then they satisfy Conditions (i)–(iv) with k = 1.
Note that p ∤ n. Otherwise, we would have p | m2 + 1, which contradicts the assumption

that p ≡ 3 (mod 4). Thus, neither u12 nor u21 is divisible by p.

Inductive step. Assume there exist integers uij satisfying (i)–(iv) for some k ≥ 1, with

u11 ≡ u22 ≡ m (mod p), u12 ≡ nθ1 (mod p), u21 ≡ −nθ2 (mod p),

where m,n are integers chosen earlier so as to satisfy (4.1). Write

u′11 = u11 + pka, u′12 = u12 + pkb, u′21 = u21 + pkc, u′22 = u22

where a, b, c are integers to be determined.

• For Condition (i), we have

(u′211 + 1)θ1 + u′212θ2

= ((u211 + 1)θ1 + u212θ2) + 2pk(u11aθ1 + u12bθ2) + p2k(a2θ1 + b2θ2).

By the induction hypothesis, the first term vanishes modulo pk. The last term vanishes
modulo pk+1. Thus, to ensure the condition holds, namely

pk+1 | (u′211 + 1)θ1 + u′212θ2,

it suffices to show that for any γ1 ∈ Z, there exist a, b ∈ Z such that

u11aθ1 + u12bθ2 ≡ (ma+ nbθ2)θ1 ≡ γ1 (mod p). (4.2)
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• Similarly, to ensure Condition (ii) holds, it suffices to show that for any γ2 ∈ Z, there
exists c ∈ Z such that

u21cθ1 ≡ −ncθ1θ2 ≡ γ2 (mod p). (4.3)

• For Condition (iii), we have

u′11u
′
21θ1 + u′12u

′
22θ2

= (u11 + pka)(u21 + pkc)θ1 + (u12 + pkb)u22θ2

= (u11u21θ1 + u12u22θ2) + pk(u11cθ1 + u21aθ1 + u22bθ2) + p2kacθ1.

Hence, for any γ3 ∈ Z, we need a, b, c to satisfy

u11cθ1 + u21aθ1 + u22bθ2 ≡ mcθ1 − naθ1θ2 +mbθ2 ≡ γ3 (mod p). (4.4)

The following choice satisfies (4.2)–(4.4):

a = −mθ−1
1 γ1 +mθ−1

2 γ2 + nγ3, b = (θ−1
1 γ1 −ma)(nθ2)

−1, c = −(nθ1θ2)
−1γ2.

The verification of (4.2) and (4.3) is straightforward, while (4.4) follows from the divisibility
condition (4.1). Finally, by construction,

u′11u
′
22 − u′12u

′
21 ≡ u11u22 − u12u21 ̸≡ 0 (mod p),

so Condition (iv) holds. This completes the proof.

4.2 Anti-automorphisms on 2-Sylow summands In the following, we classify the
conditions under which the local component (A2, q2) admits an anti-automorphism.

Lemma 4.3. Assume that A2
∼= Z/2kZ for some integer k and there exists an odd integer θ

such that

q2(a) =
θa2

2k
∈ Q(2)/2Z for each a ∈ A2.

Then (A2, q2) has no anti-automorphism.

Proof. In this case, an anti-automorphism exists if and only if there exists an odd integer u
such that

− θ

2k
=
θu2

2k
(mod 2Z), or equivalently, 2k+1 | u2 + 1.

This is impossible since u2 ≡ 1 (mod 4) for all odd u. Hence, no anti-automorphism is
allowed in this case.

Next, we treat the case where A2 is a product and the form q2 is diagonalized.

Lemma 4.4. Assume that A2
∼= (Z/2kZ)⊕ (Z/2kZ) for some integer k and there exist odd

integers θ1, θ2 such that

q2(a1, a2) =
θ1a

2
1

2k
+
θ2a

2
2

2k
∈ Q(2)/2Z for each (a1, a2) ∈ A2.

Then (A2, q2) admits an anti-automorphism if and only if θ1 + θ2 ≡ 0 (mod 4).
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Proof. Consider a group homomorphism f : A2 → A2 with

f(1, 0) = (u11, u12), f(0, 1) = (u21, u22).

A straightforward computation shows that f is an anti-automorphism if and only if the
following conditions hold:

(i) 2k+1 | (u211 + 1)θ1 + u212θ2,

(ii) 2k+1 | u221θ1 + (u222 + 1)θ2.

(iii) 2k | u11u21θ1 + u12u22θ2.

(iv) 2 ∤ u11u22 − u12u21.

We claim that these conditions imply θ1+ θ2 ≡ 0 (mod 4). Note that Condition (iv) implies

(u211, u
2
12) ≡ (1, 0), (0, 1), or (1, 1) (mod 4).

If θ1 + θ2 ̸≡ 0 (mod 4), then θ1 ≡ θ2 ≡ ±1 (mod 4). This implies that (u211 + 1)θ1 + u212θ2 is
not divisible by 4, a contradiction. Hence θ1 + θ2 ≡ 0 (mod 4).

We now prove that if θ1 + θ2 ≡ 0 (mod 4), then there exist integers uij satisfying Con-
ditions (i)–(iv).

The case k = 1. Define u11 = u22 = 0 and u12 = u21 = 1. Then Conditions (i) and (ii)
hold since θ1 + θ2 ≡ 0 (mod 4). Condition (iii) holds because u11u21θ1 + u12u22θ2 = 0, and
Condition (iv) holds since u11u22 − u12u21 = −1.

The case k = 2. Define

u11 = u22 =

{
0 if θ1 + θ2 ≡ 0 (mod 8),

2 if θ1 + θ2 ≡ 4 (mod 8),

and let u12 = u21 = 1 as before.

• If θ1 + θ2 ≡ 0 (mod 8), then

(u211 + 1)θ1 + u212θ2 = θ1 + θ2 ≡ 0 (mod 8),

u221θ1 + (u222 + 1)θ2 = θ1 + θ2 ≡ 0 (mod 8),

and u11u21θ1 + u12u22θ2 = 0.

• If θ1 + θ2 ≡ 4 (mod 8), then

(u211 + 1)θ1 + u212θ2 = 5θ1 + θ2 ≡ 4θ1 + 4 (mod 8),

u221θ1 + (u222 + 1)θ2 = θ1 + 5θ2 ≡ 4 + 4θ2 (mod 8),

which are both 0 (mod 8) since θ1 and θ2 are odd. Moreover,

u11u21θ1 + u12u22θ2 = 2θ1 + 2θ2 ≡ 0 (mod 4).
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Thus Conditions (i)–(iii) hold. Condition (iv) holds since u11u22 is even and u12u21 = 1.

Inductive step. Assume that there exist even integers u11, u22 and odd integers u12, u21
satisfying Conditions (i)–(iv) for some k ≥ 2. Write

u′11 = u11 + 2ka, u′12 = u12 + 2kb, u′21 = u21 + 2kc, u′22 = u22

where a, b, c are integers to be determined.

• For Condition (i), we have

(u′211 + 1)θ1 + u′212θ2

= ((u211 + 1)θ1 + u212θ2) + 2k+1(u11aθ1 + u12bθ2) + 22k(a2θ1 + b2θ2).

By the induction hypothesis, the first term vanishes modulo 2k+1. Note that k ≥ 2
implies 2k ≥ k + 2, so the last term vanishes modulo 2k+2. Therefore, to ensure

2k+2 | (u′211 + 1)θ1 + u′212θ2,

it suffices to show that for any γ1 ∈ Z, there exist a, b ∈ Z such that

u11aθ1 + u12bθ2 ≡ γ1 (mod 2). (4.5)

• Similarly, to ensure Condition (ii) holds, it suffices to show that for any γ2 ∈ Z, there
exists c ∈ Z such that

u21cθ1 ≡ γ2 (mod 2). (4.6)

• For Condition (iii), we have

u′11u
′
21θ1 + u′12u

′
22θ2

= (u11 + 2ka)(u21 + 2kc)θ1 + (u12 + 2kb)u22θ2

= (u11u21θ1 + u12u22θ2) + 2k(u11cθ1 + u21aθ1 + u22bθ2) + 22kacθ1.

Hence, for any γ3 ∈ Z, we need a, b, c to satisfy

u11cθ1 + u21aθ1 + u22bθ2 ≡ γ3 (mod 2). (4.7)

Using the facts that u11, u22 are even, and u12, u21, θ1, θ2 are odd, it is straightforward to
verify that the choice

a = γ3, b = γ1, c = γ2,

satisfies (4.5)–(4.7). Finally, by construction,

u′11u
′
22 − u′12u

′
21 ≡ u11u22 − u12u21 ̸≡ 0 (mod 2),

so Condition (iv) holds. This completes the proof.
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Lemma 4.5. Assume that A2
∼= (Z/2k1Z)⊕(Z/2k2Z) for some integers k1, k2 and there exist

odd integers θ1, θ2 such that

q2(a1, a2) =
θ1a

2
1

2k1
+
θ2a

2
2

2k2
∈ Q(2)/2Z for each (a1, a2) ∈ A2.

Then (A2, q2) admits an anti-automorphism if and only if one of the following holds:

• A2
∼= (Z/2kZ)⊕ (Z/2kZ) for some integer k and θ1 + θ2 ≡ 0 (mod 4).

• A2
∼= (Z/2kZ)⊕ (Z/2k+1Z) for some integer k and θ1 + θ2 ≡ 0 (mod 4).

Proof. Assume without loss of generality that k1 ≤ k2. We claim that k2 ≤ k1+1. Suppose,
to the contrary, that k2 ≥ k1 + 2. Writing f(0, 1) = (u1, u2), the relation −q2 = q2 ◦ f
evaluated at (0, 1) yields

− θ2
2k2

=
θ1u

2
1

2k1
+
θ2u

2
2

2k2
(mod 2Z),

which implies 4 | u22 + 1, a contradiction. Hence k2 = k1 or k2 = k1 + 1. The case k1 = k2 is
treated in Lemmas 4.4. We address the case k2 = k1 + 1 below.

Denote k := k1. Then A2
∼= (Z/2kZ)⊕ (Z/2k+1Z) and q2 has the form

q2(a1, a2) =
θ1a

2
1

2k
+
θ2a

2
2

2k+1
.

Consider a group homomorphism f : A2 → A2 with

f(1, 0) = (u11, u12), f(0, 1) = (u21, u22).

Note that 2 | u12 since (1, 0) has order 2k. Write

u12 = 2t12.

If f is an anti-automorphism, then necessarily −q2 = q2 ◦ f , and a straightforward compu-
tation shows that this identity holds if and only if

(i) 2k+1 | (u211 + 1)θ1 + 2t212θ2,

(ii) 2k+2 | 2u221θ1 + (u222 + 1)θ2,

(iii) 2k | u11u21θ1 + t12u22θ2.

Condition (i) implies u11 is odd. It follows that (u211 + 1)θ1 ≡ 2 (mod 4), which implies t12
is odd. Similarly, Condition (ii) implies u21 and u22 are odd. Hence u221 ≡ u222 ≡ 1 (mod 8),
and by Condition (ii) again, θ1 + θ2 ≡ 0 (mod 4).

Next, we show that if u11, t12, u21, u22 are odd, then the map f is injective, and hence
an automorphism. Indeed, if

f(a1, a2) = a1(u11, 2t12) + a2(u21, u22) = (0, 0),

then
2k | a1u11 + a2u21 and 2k+1 | 2a1t12 + a2u22.
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Hence
2k | u22(a1u11 + a2u21)− u21(2a1t12 + a2u22) = a1(u11u22 − 2t12u21).

Since u11u22 − 2t12u21 is odd, it follows that 2k | a1. This in turn implies 2k+1 | a2 by the
relation 2k+1 | 2a1t12 + a2u22 and the assumption that u22 is odd. Therefore,

(a1, a2) = (0, 0) ∈ A2
∼= (Z/2kZ)⊕ (Z/2k+1Z),

which proves that f is injective.
It remains to show that if θ1+ θ2 ≡ 0 (mod 4), then there exist odd integers u11, t12, u21,

u22 satisfying Conditions (i)–(iii) with u12 = 2t12.

The case k = 1. The choice u11 = t12 = u21 = u22 = 1 provides a solution for this case.

The case k = 2. Take u11 = t12 = u21 = 1 and set

u22 =

{
1 if θ1 + θ2 ≡ 0 (mod 8),

5 if θ1 + θ2 ≡ 4 (mod 8).

Then Conditions (i)–(iii) are satisfied.

Inductive step. Suppose that there exist odd integers u11, t12, u21, u22 satisfying Condi-
tions (i)–(iii) for some k ≥ 2. Set

u′11 = u11 + 2ka, t′12 = t12 + 2kb, u′21 = u21, u′22 = u22 + 2k+1c,

where a, b, c are integers to be determined.

• For Condition (i), we have

(u′211 + 1)θ1 + 2t′212θ2

= ((u211 + 1)θ1 + 2t212θ2) + 2k+1u11aθ1 + 2k+2t12bθ2 + 22k(a2θ1 + 2b2θ2).

By the induction hypothesis, the first term vanishes modulo 2k+1. Note that k ≥ 2
implies 2k ≥ k + 2, so the last term vanishes modulo 2k+2. Therefore, the condition

2k+2 | (u′211 + 1)θ1 + 2t′212θ2

holds if for any γ1 ∈ Z,
u11aθ1 ≡ a ≡ γ1 (mod 2).

Thus we can take a = γ1.

• By a similar computation, Condition (ii) holds in the inductive step if for any γ2 ∈ Z,

u22cθ2 ≡ c ≡ γ2 (mod 2).

Thus we can take c = γ2.
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• For Condition (iii), we have

u′11u
′
21θ1 + t′12u

′
22θ2

= (u11 + 2ka)u21θ1 + (t12 + 2kb)(u22 + 2k+1c)θ2

= (u11u21θ1 + t12u22θ2) + 2k(u21aθ1 + u22bθ2) + 2k+1t12cθ2 + 22k+1bcθ2.

Hence, for any γ3 ∈ Z, we need a and b to satisfy

u21aθ1 + u22bθ2 ≡ γ1 + b ≡ γ3 (mod 2).

Thus we can take b = γ3 − γ1.

This completes the proof.

Lemma 4.6. Assume that A2
∼= (Z/2kZ)⊕ (Z/2kZ) for some integer k and there exists an

odd integer θ such that

q2(a1, a2) =
θa1a2
2k−1

for each (a1, a2) ∈ A2.

Then (A2, q2) admits an anti-automorphism.

Proof. In this case, the map (a1, a2) 7−→ (a1,−a2) provides an anti-automorphism.

Lemma 4.7. Assume that A2
∼= (Z/2kZ)⊕ (Z/2kZ) for some integer k and there exists an

odd integer θ such that

q2(a1, a2) =
θ(a21 + a1a2 + a22)

2k−1
for each (a1, a2) ∈ A2.

Then (A2, q2) admits an anti-automorphism.

Proof. Consider a group homomorphism f : A2 → A2 with

f(1, 0) = (u11, u12), f(0, 1) = (u21, u22).

If f is an anti-automorphism, then necessarily −q2 = q2 ◦ f , and a straightforward compu-
tation shows that this identity holds if and only if

(i) 2k | u211 + u11u12 + u212 + 1,

(ii) 2k | u221 + u21u22 + u222 + 1,

(iii) 2k | 2(u11u21 + u12u22) + (u11u22 + u12u21) + 1.

Condition (i) implies that exactly one of u11 and u12 is odd. Similarly, Condition (ii)
implies exactly one of u21 and u22 is odd. Moreover, Condition (iii) implies u11u22 + u12u21
is odd. Consequently, one of the following two cases must occur:

• u11, u22 are odd while u12, u21 are even, or
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• u12, u21 are odd while u11, u22 are odd.

In either case, 2 ∤ u11u22 − u12u21, and hence f is an automorphism.
It remains to show there exist odd integers u11, u22 and even integers u12, u21 satisfying

Conditions (i)–(iii). We proceed by induction.

Base case k = 1. Taking u11 = u22 = 1 and u12 = u21 = 0 settles this case.

Inductive step. Assume that there exist odd u11, u22 and even u12, u21 satisfying Condi-
tions (i)–(iii) for some k ≥ 1. Write

u′11 = u11 + 2ka, u′12 = u12 + 2kb, u′21 = u21 + 2kc, u′22 = u22,

where a, b, c are integers to be determined.

• For Condition (i), we have

u′211 + u′11u
′
12 + u′212 + 1 = (u211 + u11u12 + u212 + 1) + 2k(u11b+ u12a) + 2k+1( . . . ).

By the induction hypothesis, the first term vanishes modulo 2k, so the condition

2k+1 | u′211 + u′11u
′
12 + u′212 + 1

holds if for any γ1 ∈ Z,

u11b+ u12a ≡ b ≡ γ1 (mod 2).

Thus we can take b = γ1.

• Similarly, Condition (ii) holds if for any γ2 ∈ Z,

cu22 ≡ c ≡ γ2 (mod 2).

Thus we can take c = γ2.

• For Condition (iii), we have

2(u′11u
′
21 + u′12u

′
22) + (u′11u

′
22 + u′12u

′
21) + 1

= (2(u11u21 + u12u22) + (u11u22 + u12u21) + 1) + 2k(u22a+ u21b+ u12c) + 2k+1( . . . ).

Hence, for any γ3 ∈ Z, we need a, b, c to satisfy

u22a+ u21b+ u12c ≡ a ≡ γ3 (mod 2).

Thus we can take a = γ3.

This completes the proof.

Proof of Theorem 1.7. The theorem follows from Lemmas 4.1, 4.2, which characterize the
existence of anti-automorphisms of (Ap, qp) for odd p, and Lemmas 4.3, 4.5, 4.6, 4.7, which
treat the case p = 2.

33



4.3 EXAMPLES OF SELF-MIRROR ABELIAN SURFACES

4.3 Examples of self-mirror abelian surfaces In what follows, we present examples
of self-mirror abelian surfaces and give a criterion for when a principally polarized abelian
surface is self-mirror.

Example 4.8. Consider a product abelian surface X = E1 × E2, where E1 and E2 are
non-isogenous elliptic curves. Then NS(X) ∼= U , which is generated by the classes of the
fibers E1 ×{0} and {0}×E2. This abelian surface is self-mirror, since U admits a primitive
embedding into U⊕2 with orthogonal complement also isomorphic to U . The stringy Kähler
moduli space MKäh(X) in this setting, along with its associated Weil–Petersson metric, was
studied in [FKY21, Section 4.2].

Before introducing further examples, we provide numerical criteria for an abelian surface
to be simple, that is, not isogenous to a product of elliptic curves.

Lemma 4.9. An abelian surface X is simple if and only if there exists no nonzero divisor
class D ∈ NS(X) with D2 = 0. In the case of Picard number 2, the surface X is simple if
and only if |discNS(X)| is not a perfect square.

Proof. An abelian surface X admits a nonzero D ∈ NS(X) with D2 = 0 if and only if there
exists an elliptic curve E ⊆ X [Kan94, Proposition 2.3]. In this case, Poincaré’s Reducibility
Theorem asserts that X is isogenous to E × F , where F ⊆ X is the complementary elliptic
curve of E [BL04, Theorem 5.3.5 and p. 125]. This proves the first statement.

Now, assume that X has Picard number 2. If X is simple, then there exists a nonzero
and primitive class D ∈ NS(X) with D2 = 0. We can extend D to a basis of NS(X), with
Gram matrix (

0 b
b 2c

)
for some integers b, c. This shows that |discNS(X)| = b2. To prove the converse, consider
the Gram matrix of NS(X) with respect to a basis {e1, e2}:(

2a b
b 2c

)
.

If |discNS(X)| is a square, then b2 − 4ac = n2 for some integer n. In this setting, the class

D = (n− b)e1 + 2ae2

satisfies D2 = 0. This proves the second statement.

Example 4.10. A slight generalization of Example 4.8 is given by abelian surfaces X with

NS(X) ∼= U(n) =

(
0 n
n 0

)
.

By Lemma 4.9, any such abelian surface is non-simple. Moreover, X is self-mirror, since its
Néron–Severi lattice has discriminant group

ANS(X)
∼= (Z/nZ)⊕ (Z/nZ)

with discriminant form

q(a1, a2) =
2a1a2
n

,

which admits an anti-automorphism given by (a1, a2) 7→ (a1,−a2).
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So far, we have seen examples of non-simple abelian surfaces that are self-mirror. In gen-
eral, simplicity and the self-mirror property are independent, as illustrated by the following
examples.

Example 4.11. Let X be an abelian surface with

NS(X) ∼=
(
0 3
3 2

)
.

Then X is non-simple by Lemma 4.9. The discriminant group of the Néron–Severi lattice is

ANS(X)
∼= Z/9Z,

which is cyclic. Hence X is not self-mirror by Theorem 1.7 (a).

Example 4.12. Let X be an abelian surface with

NS(X) ∼=
(
2 3
3 2

)
.

Since |discNS(X)| = 5 is not a square, the surface X is simple by Lemma 4.9. The discrim-
inant group of the Néron–Severi lattice is

ANS(X)
∼= Z/5Z.

In this case, X is self-mirror by Theorem 1.7.

For a principally polarized abelian surface X of Picard number 2, the self-mirror criterion
of Theorem 1.7 reduce to a numerical condition on |discNS(X)|. More specifically, we prove
that X is self-mirror if and only if the discriminant of NS(X) is divisible by neither 16 nor
any prime p ≡ 3 (mod 4).

Proof of Corollary 1.8. Recall that an abelian surface admits a principal polarization if and
only if there exists a class Θ ∈ NS(X) with Θ2 = 2. The Néron–Severi lattice is therefore
isomorphic to either (

2 1
1 −2n

)
or

(
2 0
0 −2n

)
for some integer n. In the former case, the Néron-Severi lattice has discriminant group

ANS(X)
∼= Z/(4n+ 1)Z,

which is cyclic. By Theorem 1.7, the surface X is self-mirror if and only if every prime p
dividing 4n+ 1 satisfies p ≡ 1 (mod 4).

In the latter case, the Néron-Severi lattice has discriminant form

A := ANS(X)
∼= (Z/2Z)⊕ (Z/2nZ), q(a1, a2) =

a21
2

− a22
2n
.

By Theorem 1.7, the surface X is self-mirror if and only if the local components (Ap, qp)
satisfy the following conditions:
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• Suppose p is odd. Then Ap is cyclic, which implies p ≡ 1 (mod 4). Thus |discNS(X)|
has no prime factor p ≡ 3 (mod 4).

• Suppose p = 2 and write 2n = 2ku for some odd u. Then

A2
∼= (Z/2Z)⊕ (Z/2kZ), q2(a1, a2) =

a21
2

− ua22
2k

.

where k ≤ 2 and (1 − u) ≡ 0 (mod 4). Note that k ≤ 2 is equivalent to |discNS(X)|
not divisible by 16. The relation (1− u) ≡ 0 (mod 4) holds once |discNS(X)| has no
prime factor p ≡ 3 (mod 4).

This completes the proof.
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1999.

[Bri07] Tom Bridgeland, Stability conditions on triangulated categories, Ann. of Math. (2) 166 (2007),
no. 2, 317–345.

[Bri08] , Stability conditions on K3 surfaces, Duke Math. J. 141 (2008), no. 2, 241–291.

[Bri09] , Spaces of stability conditions, Algebraic geometry—Seattle 2005. Part 1, 2009, pp. 1–21.

[Dol96] I. V. Dolgachev, Mirror symmetry for lattice polarized K3 surfaces, J. Math. Sci., New York 81
(1996), no. 3, 2599–2630 (English).

[DS05] Fred Diamond and Jerry Shurman, A first course in modular forms, Graduate Texts in Mathemat-
ics, vol. 228, Springer-Verlag, New York, 2005.

[FKY21] Yu-Wei Fan, Atsushi Kanazawa, and Shing-Tung Yau, Weil-Petersson geometry on the space of
Bridgeland stability conditions, Comm. Anal. Geom. 29 (2021), no. 3, 681–706.

[FLZ22] Lie Fu, Chunyi Li, and Xiaolei Zhao, Stability manifolds of varieties with finite Albanese morphisms,
Trans. Amer. Math. Soc. 375 (2022), no. 8, 5669–5690.

[HMS08] Daniel Huybrechts, Emanuele Macr̀ı, and Paolo Stellari, Stability conditions for generic K3 cate-
gories, Compos. Math. 144 (2008), no. 1, 134–162.

[Huy16] D. Huybrechts, Lectures on K3 surfaces, Cambridge Studies in Advanced Mathematics, vol. 158,
Cambridge University Press, Cambridge, 2016.

[Kan94] Ernst Kani, Elliptic curves on abelian surfaces, Manuscripta Math. 84 (1994), no. 2, 199–223.

36

https://arxiv.org/abs/2505.22557


REFERENCES

[Ma11] Shouhei Ma, Decompositions of an Abelian surface and quadratic forms, Ann. Inst. Fourier (Greno-
ble) 61 (2011), no. 2, 717–743.

[Muk81] Shigeru Mukai, Duality between D(X) and D(X̂) with its application to Picard sheaves, Nagoya
Math. J. 81 (1981), 153–175.

[Nik79] V. V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications, Izv.
Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 111–177, 238.

[Shi78] Tetsuji Shioda, The period map of abelian surfaces, Journal of the Faculty of Science, the University
of Tokyo. Sect. 1 A, Mathematics 25 (1978), 47–59.

[Yos09] Kōta Yoshioka, Fourier-Mukai transform on abelian surfaces, Math. Ann. 345 (2009), no. 3, 493–
524.

Y.-W. Fan, Center for Mathematics and Interdisciplinary Sciences, Fudan University
Shanghai 200433, China

Shanghai Institute for Mathematics and Interdisciplinary Sciences (SIMIS)
Shanghai 200433, China
Email: yuweifanx@gmail.com

K.-W. Lai, Department of Smart Computing and Applied Mathematics
Tunghai University
No. 1727, Sec. 4, Taiwan Blvd., Xitun Dist., Taichung City 407224, Taiwan

National Center for Theoretical Science
No. 1, Sec. 4, Roosevelt Rd., Taipei City 106319, Taiwan

Email: kwlai@thu.edu.tw

37


	Introduction
	Lattice-polarized abelian surfaces
	Marked complex 2-tori
	A lattice-theoretic lemma
	Lattice-polarization and complex moduli

	Mirror pairs of abelian surfaces
	Stringy Kähler moduli spaces
	Mirror pairs and symplectic duals
	Existence of mirror partners

	Self-mirror abelian surfaces
	Anti-automorphisms on discriminant forms
	Anti-automorphisms on 2-Sylow summands
	Examples of self-mirror abelian surfaces


