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Abstract

The rationality problem in algebraic geometry studies whether a given variety ad-
mits a parametrization by a projective space, and how to construct a good one that
faithfully reflects the geometry of the variety. Cubic fourfolds, i.e., smooth complex
cubic hypersurfaces in P5, form the simplest type of examples whose rationality is still
poorly understood. They have received much attention in recent years due to the sim-
ple construction as well as their intriguing relationship with K3 surfaces. The purpose
of this note is to give an overview of this subject to a broad audience in algebraic ge-
ometry, with an emphasis on examples and how these examples inspired the formations
of conjectures and recent developments.

1 Introduction

An algebraic variety X of dimension n defined over a field k is called rational if its function
field is isomorphic to the field of rational functions in n independent variables, or equivalently,
if there exists a birational map X

∼ // Pn . Otherwise, we call X irrational. Projective
spaces are clearly rational. A quadratic hypersurface Q ⊂ Pn+1 with a k-rational point
p ∈ Q is also rational as the stereographic projection from p maps Q birationally onto Pn.
For smooth cubic hypersurfaces defined over C, it is known that:

• Every cubic curve E ⊂ P2 is an elliptic curve, thus is irrational.

• Every cubic surface S ⊂ P3 is rational as it is the blowup of P2 at six points. (See, for
example, [Bea96, Theorem IV.13].)

• Every cubic threefold Y ⊂ P4 is irrational by Clemens and Griffiths [CG72]. They
proved this by showing that the intermediate Jacobian of Y cannot be a product of
Jacobians of curves, which must occur for a rational threefold.

For cubic fourfolds X ⊂ P5, it is expected that a very general one is irrational, through
there is no example found so far. On the other hand, there exist some evidences indicating
that certain type of cubic fourfolds are rational. To make this more precise, consider the
Zariski open subset U ⊂ |OP5(3)| of smooth cubic polynomials up to rescaling. Then the
moduli space of cubic fourfolds is given as the quotient

C := [U/PGL6(C)]
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PFAFFIAN CUBIC FOURFOLDS

in the sense of geometric invariant theory [MFK94, §4.2]. This is a Deligne–Mumford stack
with a quasi-projective course moduli space of dimension 20. A cubic fourfold is called
special if it contains an algebraic surface not homologous to a complete intersection. They
form countably many irreducible divisors Cd ⊂ C indexed by the integers

d ≥ 8 and d ≡ 0, 2 (mod 6). (1.1)

Moreover, every X ∈ Cd can be associated with a K3 surface in terms of Hodge theory
provided that, in addition,

d is not divisible by 4, 9, or any odd prime p ≡ 2 (mod 3). (1.2)

The rationality conjecture for cubic fourfolds, formulated originally by Kuznetsov [Kuz10,
Conjecture 1.1] in terms of derived categories, states that a cubic fourfold is rational if and
only if it admits an associated K3 surface.

This article consists of three parts. In Section 2, we discuss Pfaffian cubic fourfolds,
namely, the cubic fourfolds that are defined by the Pfaffians of 6 × 6 matrices in linear
polynomials. As examples of rational cubic fourfolds, their rationality and associated K3
surfaces can be constructed in explicit ways, and these constructions have inspired many of
later developments in the subject. In Section 3, we review a global picture established by
Hassett [Has00] which involves all cubic fourfolds. The notions of special cubic fourfolds,
associated K3 surfaces, and the main ideas behind the numerical conditions (1.1) and (1.2)
will be introduced here. In Section 4, we give an overview of the rationality conjecture, its
motivation, and the evidences that have been discovered so far.

2 Pfaffian cubic fourfolds

Recall that the Pfaffian of a 2n×2n skew-symmetric matrix A is pf(A) =
√

det(A). Pfaffian
cubic fourfolds are smooth cubics X ⊂ P5 defined by equations of the form pf(A) = 0 where
A is a 6×6 matrix in linear forms of P5. The study of such cubics can be dated back to 1940s
and has received the attentions from many experts involving Morin [Mor40], Fano [Fan43],
Tregub [Tre84, Tre93], and Beauville–Donagi [BD85]. They appear as examples of rational
cubic fourfolds whose rationality and associated K3 surfaces can be constructed in relatively
simple and explicit ways. In the following, we will review these constructions as well as how
these cubics distribute in the moduli space.

2.1 Construction and the associated K3 surfaces

Let V be a complex vector space of dimension 6 and consider the space ∧2V of bivec-
tors. Then the degenerate bivectors in the space P (∧2V ) ∼= P14 form a hypersurface
Pf(V ) ⊂ P (∧2V ) which is a cubic defined by the Pfaffian of a 6× 6 skew-symmetric matrix
in independent variables. The hypersurface Pf(V ) is singular along the locus of bivectors
of rank at most 2, which coincides with the Grassmannian Gr(2, V ) ⊂ P (∧2V ) under the
Plücker embedding. In particular, we have a filtration

Gr(2, V ) ⊂ Pf(V ) ⊂ P
(
∧2V

)
.
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2.1 CONSTRUCTION AND THE ASSOCIATED K3 SURFACES

The same construction on the dual space V ∗ gives another filtration

Gr(2, V ∗) ⊂ Pf(V ∗) ⊂ P
(
∧2V ∗

)
.

Notice that each Grassmannian has codimension 6 in the ambient P14. Hence, for a general
5-plane H ⊂ P (∧2V ∗), the intersection

X := H ∩ Pf(V ∗) ⊂ H ∼= P5 (2.1)

is a Pfaffian cubic fourfold. On the other hand, the collection of linear forms on P (∧2V ∗)
vanishing along H forms the dual 8-plane H⊥ ⊂ P (∧2V ). Taking intersection with Gr(2, V )
produces a smooth surface

S := H⊥ ∩Gr(2, V ) ⊂ H⊥ ∼= P8. (2.2)

Proposition 2.1. The surface S ⊂ P8 has degree 14 and is simply connected with trivial
canonical bundle, i.e., S a polarized K3 surface of degree 14.

Sketch of proof. The surface S ⊂ P8 has degree 14 follows from the fact that Gr(2, V ) has
degree 14 under the Pücker embedding, which can be verified via the Schubert calculus. It
is simply connected due to the fact that Gr(2, V ) is simply connected and the Lefschetz
hyperplane theorem. To compute the canonical bundle, let U denote the tautological bundle
of Gr(2, V ). Then the Pücker embedding corresponds to the line bundle O(1) = ∧2U∗, and
the result follows by computing that KGr(2,V )

∼= O(−6) and the adjunction formula.

Remark 2.2. For a variety Y ⊂ Pn, its projective dual Y ∗ ⊂ (Pn)∗ is defined as the collection
of hyperplanes tangent to Y , or more precisely,

Y ∗ = {H ∈ (Pn)∗ | H ⊃ TpY for some smooth point p ∈ Y }.

Moreover, we have Y ∗∗ = Y by the reflexivity theorem. In our setting, the two varieties

Gr(2, V ) ⊂ P
(
∧2V

)
and Pf(V ∗) ⊂ P

(
∧2V ∗

)
appear as the projective duals to each other. (See, for example, [BC09, Proposition 1.5])
This provides the basis for Kusnetsov’s homological projective duality which was used to
show that the K3 category of the Pfaffian cubic X is equivalent to the derived category
Db(S) of the associated K3.

2.1.1 Fano variety of lines as hyperkähler fourfolds The Fano variety F (X) of lines on X
is a smooth fourfold. In [BD85], Beauville and Donagi constructed an isomorphism

S[2] ∼ // F (X) (2.3)

where S[2] is the Hilbert scheme of length two subschemes on S. Let us review how this map
is defined: Since S appears as a general linear section on Gr(2, V ), every point p + q ∈ S[2]

determines a subspace 〈p, q〉 ⊂ V of dimension 4 in the following ways:
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2.1 CONSTRUCTION AND THE ASSOCIATED K3 SURFACES

• If p and q are distinct points on S, then they correspond to disjoint subspaces in V of
dimension 2, which span the subspace 〈p, q〉 ⊂ V .

• If p + q represents a nonreduced subscheme of S, then it corresponds to an element
p ∈ Gr(2, V ) with a linear map q : p→ V/p up to rescaling. In this case, we can define
〈p, q〉 ⊂ V as the preimage of Im q ⊂ V/p under the quotient V → V/p.

The 2-forms in H that vanish along 〈p, q〉 form a linear subspace 〈p, q〉⊥H . It turns out that
this is a line contained in X. (See Lemma 2.3.) The map (2.3) is defined by sending p + q
to 〈p, q〉⊥H . We refer the reader to [BD85, Proposition 5 (i)] for the proof that it is an
isomorphism.

Lemma 2.3. The linear subspace 〈p, q〉⊥H ⊂ H is a line contained in X.

Proof. All of the 2-forms that vanish along 〈p, q〉 form an 8-plane 〈p, q〉⊥P(∧2V ∗) in P(∧2V ∗)
and we have 〈p, q〉⊥H = 〈p, q〉⊥P(∧2V ∗) ∩ H. As H = H⊥⊥, the subspace 〈p, q〉⊥H is cut out
by the hyperplanes parametrized by H⊥. Notice that p and q are chosen from H⊥ and
they correspond to hyperplanes passing through 〈p, q〉⊥P(∧2V ∗), so H⊥ imposes 9 − 2 = 7
independent conditions on 〈p, q〉⊥P(∧2V ∗). It follows that 〈p, q〉⊥H has codimension 7 in the
8-plane 〈p, q〉⊥P(∧2V ∗) and thus is a line. Moreover, the 2-forms vanishing along 〈p, q〉 are
necessarily degenerate, so the line 〈p, q〉⊥H is contained in H ∩ Pf(V ∗) = X.

2.1.2 Relations among the Hodge structures The isomorphism F (X) ∼= S[2] from (2.3) and

the lattice structure on H2(S[2],Z) induced by the Beauville–Bogomolov–Fujiki form build
up the isomorphisms

H2(F (X),Z) ∼= H2(S[2],Z) ∼= Zδ ⊕⊥ H2(S,Z), δ · δ = −2. (2.4)

Here 2δ corresponds to the divisor of S[2] that parametrizes nonreduced subschemes, and the
pairing on H2(S,Z) coincides with the intersection product on S. On the other hand, the
incidence relation

Y := {(x, `) ∈ X × F (X) | x ∈ `}
p1
��

p2
// F (X)

X

determines the Abel–Jacobi map

α : H4(X,Z) // H2(F (X),Z) : v � // p2∗p
∗
1v

which is an isomorphism of abelian groups. Let h ∈ H2(X,Z) be the class of hyperplane
sections and let g ∈ H2(F (X),Z) be the polarization coming from F (X) ⊂ Gr(2, 6) ⊂ P14

where the second inclusion is the Plücker embedding. Then α(h2) = g [BD85, §3], and α
restricts to an isomorphism between the primitive parts :

α′ : H4(X,Z)prim
∼ // H2(F (X),Z)prim(−1)

which preserves the Hodge and lattice structures [BD85, Proposition 6]. Together with (2.4),
this induces a saturated embedding

H2(S,Z)prim(−1) �
�

// H4(X,Z)prim.

This makes S an example of a Hodge-associated K3 surface which will be defined in §3.3.
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2.2 APPROACHES TO THE RATIONALITY

2.2 Approaches to the rationality

Here we exhibit a few methods about proving that every Pfaffian cubic fourfold is rational.
One of them uses the construction in §2.1 directly. The others use the fact that such a cubic
contains special algebraic surfaces.

2.2.1 Direct application of the construction This method was taken by Beauville and Don-
agi [BD85] to prove the rationality. From (2.1) and the fact that X is disjoint from Gr(2, V ∗),
we see that every point [ϕ] ∈ X is represented by a linear map ϕ : V → V ∗ such that
kerϕ ⊂ V has dimension exactly 2. Consider the incidence variety Z ⊂ P(V ) × X defined
by

Z = {([v], [ϕ]) ∈ P(V )×X | v ∈ kerϕ}
π1
��

π2 // X

P(V ).

Note that the fiber of each [ϕ] ∈ X under π2 is of the form

π−1
2 ([ϕ]) = P(kerϕ) ∼= P1

which is a line in P(V ) under the map π1. Since π1 is birational due to Lemma 2.4 below,
the map π2 induces a birational map from a general P4 ⊂ P(V ) onto X.

Lemma 2.4. The morphism π1 : Z −→ P(V ) is birational.

Proof. Let v ∈ V be a nonzero vector. By linear algebra, the set of [ϕ] ∈ P(∧2V ∗) such
that ϕ(v) = 0 is a 9-plane Lv contained in Pf(V ∗). Recall that X = H ∩ Pf(V ∗) where
H is a 5-plane. Then Lv and H meet in a linear subspace within X of dimension at least
(9 + 5)− 14 = 0. This implies that π1 is surjective with connected fibers, which forces it to
be birational as dim(Z) = dim(P(V )) = 5.

2.2.2 Using quintic del Pezzo surfaces A cubic fourfold X is Pfaffian if and only if it
contains a quintic del Pezzo surface T ⊂ X [Bea00, Proposition 9.2 (a)]. Recall that T
is abstractly isomorphic to the blowup of P2 at four points in general positions, and its
embedding into P5 is defined by the anti-canonical system. In the following, we say that a
line ` ⊂ P5 is secant to T if it intersects T in two points counted with multiplicity. Notice
that every such line meets X at one and only one point outside T . Suppose that

(1) a general point p ∈ P5 lies on a line secant to T , and

(2) the family of lines secant to T is parametrized by a rational fourfold W .

Consider the fibration η : W̃ → W where η−1(p) is the secant line parametrized by p ∈ W .
Then the above hypothesis realizes X as a rational section of η, which implies that X
is birational to W and thus rational. In the following, we introduce one of the ways in
establishing these conditions.
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2.2 APPROACHES TO THE RATIONALITY

Lemma 2.5. Let IT be the ideal sheaf of T ⊂ P5. Then h0(P5, IT (2)) = 5 and IT (2) is
generated by global sections.

Proof. Using the short exact sequence 0 −→ IT −→ OP5 −→ OT −→ 0 and the Riemann–
Roch formula for T , one can verify that

h0(P5, IT (2)) = h0(P5,OP5(2))− h0(T,OT (2)) = 21− 16 = 5.

Similar computations imply h1(P5, IT (1)) = h2(P5, IT ) = 0, so the Castelnuovo–Mumford
regularity of IT equals 2, whence IT (2) is generated by global sections.

By Lemma 2.5, the linear system |IT (2)| defines a rational map f : P5 99K P4 which can
be resolved by a blowup along T , as depicted below

Y = BlTP5

��

f ′

%%

P5
f

// P4.

Because f is defined by the quadrics passing through T , a line secant to T is contracted by
this map. On the other hand, we have that

Proposition 2.6. A general fiber of f appears as a line secant to T .

Proof. In the Picard group of Y , let H (resp. H ′) denote the pullback of the hyperplane
class on P5 (resp. P4) and E be the exceptional divisor of the blowup Y → P5. Due to the
construction of f , these classes satisfy the relation H ′ = 2H −E, and the class corresponds
to a general fiber of f equals H ′4. We want to show that

HH ′
4

= H(2H − E)4 = 1 and EH ′
4

= E(2H − E)4 = 2 (2.5)

as the former (resp. the latter) says that a general fiber is a line (resp. is secant to T ). To
compute these intersection numbers, first recall that the Segre class of i : T ↪→ P5 is given
by s(T,P5) = c(NT/P5)−1 = c(T ) · i∗c(P5)−1. Let h ∈ Pic(T ) denote the class of hyperplane
sections. Then for each k = 0, . . . , 5, a straightforward computation shows

H5−kEk = (−1)k−1

∫
T

h5−k · s(T,P5) =



1 if k = 0

0 if k = 1, 2

5 if k = 3

25 if k = 4

82 if k = 5

Then the result follows by inserting these numbers back to (2.5).

Proposition 2.6 implies condition (1) immediately. It also implies that the family of secant
lines of T is birationally parametrized by the codomain P4 of the map f , thus establishes
condition (2). This concludes that X is rational. Notice that the strict transform of the
cubic X to the blowup Y appears as a rational section of f ′.
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2.2 APPROACHES TO THE RATIONALITY

Remark 2.7. Let πp : T → P4 be the projection from a general point p ∈ P5. Using the
double point formula [Ful98, Theorem 9.3], one can verify that the image πp(T ) is singular
along one double point, which implies that p lies on one and only one secant line of T , and
thus establishes (1). Condition (2) can be confirmed by the fact that the Hilbert scheme of
length two subschemes on a rational surface is rational. (See, for example, [ABCH13, §10.1].)
This provides a slightly different approach to the rationality.

Remark 2.8. The idea presented in this section has been generalized by Russo and Staglianò
to produce new examples of rational cubic fourfolds [RS19, RS20]. In their construction,
secant lines are replaced by rational curves of higher degrees that intersect a surface in a
cubic fourfold with higher multiplicities. We will review their results in §4.3.

2.2.3 Using quartic scrolls Let X be a Pfaffian cubic fourfold and S be its associated K3
surface. Recall from (2.3) that there is an isomorphism

F (X) ∼ // S[2].

The locus on S[2] that parametrizes nonreduced subschemes is naturally isomorphic to the
projective tangent bundle P(TS). Under the above isomorphism, the P1-fibers of this bundle
correspond to rational curves R ⊂ F (X), which then induce a family of quartic scrolls Σ ⊂ X
parametrized by S [HT01, Example 7.7]. The surface Σ ⊂ P5 is isomorphic to either

• P1 × P1 embedded via the system |OP1×P1(1, 2)|, or

• the Hirzebruch surface F2 embedded via |OF2(h+ f)| where h (resp. f) is the class of
a section (resp. of a fiber) so that f 2 = 0, f · h = 1, and h2 = 2.

The second case is a specialization of the first. (For this fact, we refer the reader to [Lai17,
Proposition 4.1 (3)] for a general description about how rational scrolls of different types
distribute in the Hilbert scheme.)

Proposition 2.9. In both cases, the system of quadrics passing through Σ defines a rational
map g : P5 99K P5 that can be resolved by blowing up Σ, as depicted below

Y := BlΣP5

ε
��

g′

%%

P5 g
// P5.

Moreover, the image of g is a quadratic hypersurface Q ⊂ P5, and a general fiber of g is a
line secant to Σ.

Sketch of proof. The first statement can be proved in the same way as Lemma 2.5. Here
we refer the reader to [Lai17, Lemma 1.1] if they need data about sheaf cohomologies on
Hirzebruch surfaces during their computation. The remaining part of the proposition can
be verified using intersection theory as in Proposition 2.6. For example, to see that the
image is a quadric Q ⊂ P5, we first denote by H ∈ Pic(Y ) (resp. H ′ ∈ Pic(Y )) the pullback

7



2.3 CUBIC FOURFOLDS CONTAINING DISJOINT PLANES

of the hyperplane class in the domain of g (resp. the codomain of g) and let E ∈ Pic(Y )
be the exceptional divisor of ε. Then H ′ = 2H − E. One can compute that H ′5 = 0 and
HH ′4 = 2, where the former says that g is not dominant, and the latter implies that the
image g(P5) ⊂ P5 is either

(i) a hyperplane and the preimage under g of a general line in P5 is a conic, or

(ii) a quadric and the preimage under g of a general line in P5 consists of two lines.

Condition (i) is impossible because it implies that the quadrics that define g are linearly
dependent. Hence we are in condition (ii).

Proposition 2.9 establishes conditions (1) and (2) in §2.2.2. In this case, the cubic fourfold
X appears as a rational section of a P1-bundle over a quadric Q, where a general P1-fiber
corresponds to a secant line of Σ. In particular, X is birational to Q and thus is rational.

2.3 Cubic fourfolds containing disjoint planes

Cubic fourfolds containing two disjoint planes appear as limits of Pfaffian cubic fourfolds in
the moduli space ([Tre93], see also [Has16, Remark 7]). As an explicit example, consider P5

in homogeneous coordinates [u : v : w : x : y : z] and the two planes

P1 := {x = y = z = 0} and P2 := {u = v = w = 0}.

Then the cubic hypersurface

X := {ux2 + vy2 + wz2 = u2x+ v2y + w2z} ⊂ P5

is smooth and contains P1 and P2. Notice that a general point in P5 lies on a unique line
joining P1 and P2, and a line joining P1 and P2 intersects X in a third point outside the two
planes. (Compare these with (1) and (2) in §2.2.2.) This induces a birational map

ρ : P1 × P2
∼ // X : (a, b) � // ρ(a, b) where 〈a, b〉 ∩X = {a, b, ρ(a, b)}.

The construction of the associated K3 surface is very straightforward in this case. Indeed,
the map ρ is undefined if and only if the line spanned by the pair (a, b) ∈ P1×P2 is contained
in X, so the base locus of ρ is defined by

Bs(ρ) = {ux2 + vy2 + wz2 = 0 = u2x+ v2y + w2z} ⊂ P1 × P2.

This is a complete intersection in P2 × P2 cut out by polynomials of bidegrees (1, 2) and
(2, 1), so it is a K3 surface.

Remark 2.10. Pfaffian cubic fourfolds are Zariski dense in an irreducible divisor C14 in the
moduli space. They are examples of special cubic fourfolds to be defined in §3.2. The locus
C14 consists of special cubic fourfolds X labelled by a rank two saturated sublattice

h2 ∈
(

3 5
5 13

)
∼=
(

3 4
4 10

)
⊂ H2,2(X,Z) where h = c1(OX(1)). (2.6)
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HODGE THEORY OF SPECIAL CUBIC FOURFOLDS

When X contains a quintic del Pezzo surface T (resp. a quartic scroll Σ), the lattice 〈h2, T 〉
(resp. 〈h2,Σ〉) has the intersection matrix on the left (resp. on the right). Consider the
following subsets of C14:

CPf = {X ∈ C14 | X is Pfaffian}
CdP = {X ∈ C14 | X contains a quintic del Pezzo surface}
CRS = {X ∈ C14 | X contains a quartic rational scroll}
CΠ = {X ∈ C14 | X contains disjoint planes}

The first 3 subsets contain a Zariski open subset in C14, and we have CPf = CdP ⊂ CRS.
However, it was proved by Bolognesi, Russo, and Staglianò [BRS19, Theorem 3.7] that CPf

is not Zariski open in C14. On the other hand, CΠ has codimension one in C14, and Auel
[Aue20, Theorem 1] proved that the complement C14 \ CPf is contained in CΠ. In particular,
a member of C14 is Pfaffian or contains disjoint planes (or both).

3 Hodge theory of special cubic fourfolds

In this section, we will review the definitions of special cubic fourfolds and associated K3
surfaces, and try to give the ideas about how the numerical conditions (1.1) and (1.2) are
obtained. The main references for this part are Hassett’s seminal paper [Has00] and his
lecture note [Has16].

3.1 Hodge structures of cubic fourfolds

3.1.1 Middle cohomologies as lattices The Hodge diamond of a cubic fourfold has the shape

1

0 0

0 1 0

0 0 0 0

0 1 21 1 0.

Notice that H4(X,Z) has a weight two Hodge structure. These Hodge numbers, together
with the Riemann bilinear relations, imply that the middle cohomology H4(X,Z) equipped
with the intersection product is a unimodular lattice of signature (21, 2). Let h ∈ H2(X,Z)
denote the class of hyperplane sections. Then the square h2 ∈ H4(X,Z) has self-intersection
h2 · h2 = h4 = 3. As every indefinite unimodular lattice carrying a vector of odd self-
intersection possesses an orthogonal basis (see, for example, [MH73, Theorem 4.3]), the
lattice H4(X,Z) is isomorphic to 〈1〉⊕21 ⊕ 〈−1〉⊕2.

For the same reason, we can further identify the middle cohomology as

H4(X,Z) ∼= U⊕2 ⊕ E⊕2
8 ⊕ 〈1〉⊕3 where U =

(
0 1
1 0

)
. (3.1)
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3.1 HODGE STRUCTURES OF CUBIC FOURFOLDS

Here E8 is the unique unimodular even lattice of signature (8, 0), which is spanned by the
vectors {e1, . . . , e8} with ei ·ei = 2 for all i and ei ·ej = −1 for i-th and j-th vertices adjacent
in the corresponding Dynkin diagram

•1 •2 •3 •4 •5 •6 7•

•8

Under the identification (3.1), we can let h2 = (1, 1, 1) ∈ 〈1〉⊕3 upon possibly taking a lattice
automorphism. This allows one to compute explicitly the primitive cohomology as

H4(X,Z)prim = 〈h2〉⊥H4(X,Z) ∼= U⊕2 ⊕ E⊕2
8 ⊕ A2 where A2 =

(
2 −1
−1 2

)
.

Notice that this is an even lattice of signature (20, 2).

3.1.2 Torelli theorem for cubic fourfolds The Torelli theorem lays down the foundation for
a description about the moduli spaces of special cubic fourfolds to be introduced in §3.2. We
briefly review the theorem here.

For the sake of simplicity, let us denote

Λ := U⊕2 ⊕ E⊕2
8 ⊕ A2.

The dual lattice Λ∨ := Hom(Λ,Z) is the space of Z-valued linear functionals on Λ. Due to
the nondegeneracy of the pairing on Λ, we can identify

Λ∨ = {v ∈ Λ⊗Q | v · w ∈ Z for all w ∈ Λ}.

In particular, Λ∨ carries a pairing inherited from Λ, and we can consider Λ as a sublattice
of Λ∨ via the natural embedding Λ → Λ∨ : v 7→ v ⊗ 1. The discriminant group of of Λ is
defined as the quotient Λ∨/Λ, which can be computed explicitly via the isomorphisms

Λ∨/Λ ∼= A∨2 /A2
∼= Z/3Z.

Note that, as Λ is even, its pairing induces a Q/2Z-valued pairing on Λ∨/Λ.
The automorphisms of the lattice Λ arising from the monodromy of cubic fourfolds form

the subgroup
Γ := {g ∈ O(Λ) | g acts trivially on Λ∨/Λ}.

This group acts on the period domain Ω, defined as one of the connected components of
the open quadric {x ∈ P(Λ ⊗ C) | x · x = 0, x · x > 0}. The period space of Λ is defined
as the quotient P := Γ\Ω. This is a 20-dimensional quasi-projective variety according to
Baily–Borel [BB66]. Voisin’s Torelli theorem [Voi86] asserts that the period map

τ : C // P : X � // H1,3(X,C) (3.2)

is an open immersion. In fact, the domain of this map can be extended to cover singular
cubics. More precisely, cubic hypersurfaces with at worst an ordinary double point are stable

10



3.2 SPECIAL CUBIC FOURFOLDS AND THEIR MODULI

in the sense of geometric invariant theory, which can be proved via the numerical criterion
for stability [MFK94, §2.1] and the methods in [MFK94, §4.2]. Therefore, we can extend the
quotient C = [U/PGL6(C)] to

C̃ ⊃ C (3.3)

such that the complement C̃ \ C parametrizes cubics with an ordinary double point.

Theorem 3.1 ([Voi86]). The period map (3.2) extends to an open immersion

τ̃ : C̃ // P : X � // H1,3(X,C)

where H1,3(X,C) stands for the limiting Hodge structure for singular X.

3.2 Special cubic fourfolds and their moduli

The integral Hodge conjecture is valid for cubic fourfolds [Voi13], which asserts that the
sublattice

H2,2(X,Z) := H2,2(X,C) ∩H4(X,Z)

for every cubic fourfold X is generated by the classes of algebraic surfaces. This lattice is
spanned by h2 if X ∈ C is very general, i.e., is away from the union of a countable collection of
Zariski closed subsets. We say X is special if X contains an algebraic surface not homologous
to a complete intersection. In this case, X carries at least one labelling, namely a rank two
saturated sublattice K ⊂ H2,2(X,Z) that contains h2. Suppose that K is spanned by h2

and the class v of some algebraic surface. Then the discriminant of K is defined as

disc(K) := det

(
h2 · h2 h2 · v
v · h2 v · v

)
which is independent of the choices of basis elements. Using the lattice structures of the
middle cohomology of X, one can verify that the discriminant d of a labelling is necessarily
positive and satisfies d ≡ 0 or 2 (mod 6) [Has00, Proposition 3.2.2].

3.2.1 Irreducibility of the moduli spaces The locus Cd ⊂ C of special cubic fourfolds pos-
sessing a labelling of discriminant d is an irreducible divisor provided that it is nonempty
[Has00, Theorem 3.2.3]. To see this, let us define Pd ⊂ P be the Γ-quotient of the union of
hyperplane sections ⋃

labelling K⊂H4(X,Z)

of discriminant d

K⊥ ⊂ Ω.

Then Cd = τ−1(Pd) where τ is the period map (3.2). It is straightforward to verify that the
action of Γ can be extended to the full H4(X,Z) by fixing h2. This action acts transitively
on the set of labellings with the same discriminant [Has00, Proposition 3.2.4]. For example,
if d is not divisible by 9, one can verify that an arbitrary labelling of discriminant d lies in
the orbit of the labelling(

3 0
0 2n

)
if d = 6n and

(
3 1
1 2n+ 1

)
if d = 6n+ 2.

It follows that Pd is irreducible, hence Cd is irreducible.

11



3.3 ASSOCIATED K3 SURFACES

3.2.2 Existence of special cubic fourfolds Hassett proved that Cd is nonempty for each
d ≥ 8 that satisfies d ≡ 0 or 2 (mod 6) [Has00, Theorem 4.3.1]. This was achieved via a
correspondence between the set of cubics with an ordinary double point and the set of sextic
K3 surfaces: Let X0 ⊂ P5 be a cubic hypersurface singular along an ordinary double point

p ∈ X0. The projection from p defines a birational map πp : X0
∼ // P4 which factors as

X0 = BlSP4

q1

yy

q2

%%

X0
πp

∼
// P4.

(3.4)

The map q1 is the blowup of X0 at p. On the other hand, q2 is the contraction of the lines in
X0 passing through p, which is the same as the blowup of P4 at a sextic K3 surface S ⊂ P4.
To verify this, one can work with affine coordinates (x1, . . . , x5) with p = (0, 0, 0, 0, 0) and
express X0 as the zero locus of f2 + f3, where f2 and f3 are homogeneous polynomials of
degrees 2 and 3 respectively. Then S arises as the complete intersection {f2 = f3 = 0} in P4.
Conversely, given a sextic K3 surface S ⊂ P4, one obtains a cubic X0 ⊂ P5 singular along an
ordinary double point via the same diagram, where the inverse π−1

p is defined by the system
of cubics passing through S.

The above picture establishes an isomorphism between the complement C6 := C̃ \ C and
the period space of sextic K3 surfaces. To construct a cubic fourfold with a labelling of
discriminant d ≥ 8 with d ≡ 0, 2 (mod 6), one start with a sextic K3 surface S such that
the Picard group of S contains the lattice(

6 0
0 −2n

)
if d = 6n and

(
6 2
2 −2n

)
if d = 6n+ 2.

This produces an X0 ∈ C6 carrying a labelling of discriminant d via the construction (3.4),
and a member of Cd can be obtained by smoothing X0. We refer the reader to [Has00, §4.3]
for the details.

Theorem 3.2 ([Has00, Theorems 3.2.3 and 4.3.1]). The locus Cd ⊂ C of special cubic four-
folds of discriminant d is an irreducible divisor, which is nonempty if and only if d ≥ 8 and
d ≡ 0, 2 (mod 6).

3.3 Associated K3 surfaces

There are two different ways to define how a K3 surface is associated with a given special
cubic fourfold. The first one was introduced by Hassett in terms of of Hodge theory. The
other one was introduced by Kuznetsov via derived categories. We review the Hodge theoretic
definition here and leave the derived categorical one to §4.1.

Definition 3.3 (Associated K3 surfaces). Let X be a special cubic fourfold with a labelling
K of discriminant d and let S be a K3 surface with a polarization f of degree d. We say X
and S are (Hodge-)associated if there exists an isomorphism

H4(X,Z) ⊃ K⊥ ∼ // f⊥ ⊂ H2(S,Z)(−1) (3.5)

that preserves the Hodge structures.

12



K3 CATEGORIES AND THE RATIONALITY CONJECTURE

3.3.1 Existence of associated K3 surfaces It turns out that the existence of an associated
K3 surface is a lattice theoretic problem. Indeed, it is easy to see that the isomorphism (3.5)
induces a lattice isomorphism between K⊥(−1) and the lattice

Md := 〈−d〉 ⊕ U⊕2 ⊕ E8(−1)⊕2

underlying the primitive cohomology of a degree d K3 surface. Conversely, if there exists a
lattice isomorphism K⊥(−1) ∼= Md, then the surjectivity of the period map for K3 surfaces
[Bea85,Siu81] asserts that there exists a pseudo-polarized K3 surface (S, f) with f 2 = d such
that there is an isomorphism (3.5) preserving the Hodge structures. Recall that f is a pseudo-
polarization means that it lies in the closure of the Kähler cone of S. Then the smoothness
of X implies that K⊥ contains no vector of self-intersection 2 [Voi86, §4, Proposition 1]. This
implies that S contains no (−2)-curve orthogonal to f , so f is a polarization. As a result,
the searching for associated K3 surfaces boils down to a computation of lattices as treated
in [Has00, Proposition 5.1.4].

Theorem 3.4 ([Has00, Theorem 5.1.3]). A member X ∈ Cd admits an associated K3 surface
if and only if d is not divisible by 4, 9, or any odd prime p ≡ 2 (mod 3).

3.3.2 Counting associated K3 surfaces For a very general X ∈ Cd with such a d, there
exists exactly one associated K3 surface if d ≡ 2 (mod 6) and exactly two if d ≡ 0 (mod 6).
This statement was established by considering the moduli space of marked cubic fourfolds

Cmar
d := {(X, ι : K ↪→ H2,2(X,Z)) | ι(K) is a labelling of X}.

There exists no nontrivial automorphism of K that fixes h2 if d ≡ 2 (mod 6). When d ≡ 0
(mod 6), the only nontrivial such automorphism acts on (h2)⊥K as the multiplication by −1.
This shows that the forgetting map Cmar

d → Cd is a birational morphism for d ≡ 2 (mod 6)
and generically 2-to-1 for d ≡ 0 (mod 6). Moreover, a comparison between the constructions
of Cmar

d and the period space of polarized K3 surfaces of degree d shows that there exists an
embedding of the former into the latter [Has00, Corollary 5.2.4]. This yields:

Theorem 3.5 ([Has16, Proposition 24]). Let Fd be the moduli space of polarized K3 surfaces
of degree d. Then the assignment of a K3 surface to its associated cubic fourfold defines a
rational map Fd 99K Cd, which is birational if d ≡ 2 (mod 6) and 2-to-1 if d ≡ 0 (mod 6).

4 K3 categories and the rationality conjecture

In this section, we review the formulation of the conjecture, the motivation, and the rational
examples discovered up to the point when this article was written.

4.1 K3 categories of cubic fourfolds

Definition 4.1. Let D a k-linear triangulated category where k is an algebraically closed
field of characteristic zero.
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4.2 THE RATIONALITY CONJECTURE AND MOTIVATION

• A semiorthogonal decomposition D = 〈D1, . . . ,Dm〉 is an ordered collection of full
triangulated subcategories D1, . . . ,Dm of D such that Hom(Di,Dj) = 0 for i > j and
for every object F ∈ D there exists a chain of morphisms

0 = Fm // Fm−1
// · · · // F1

// F0 = F

such that cone(Fi −→ Fi−1) ∈ Di for 1 ≤ i ≤ m.

• An object E ∈ D is called exceptional if Hom(E,E) ∼= k and Extp(E,E) = 0 for
p 6= 0. An ordered collection of exceptional objects E1, . . . , Em is called exceptional if
Extp(Ei, Ej) = 0 for i > j and all p ∈ Z.

In our setting, we have D = Db(X), the bounded derived category of coherent sheaves
on a cubic fourfold X ⊂ P5. Note that KX

∼= OX(−3) by the adjunction formula. Then a
straightforward computation shows that

Extp(OX ,OX(−t)) ∼=

{
C for t = p = 0

0 for 0 < t ≤ 2 and p ∈ Z

where the second row can be verified with the aid of the Kodaira vanishing theorem. This
shows that the triple (OX ,OX(1),OX(2)) form an exceptional collection. The K3 category
of X is defined as the right orthogonal

AX = 〈OX ,OX(1),OX(2)〉⊥

= {F ∈ Db(X) | Hom(G,F ) = 0 for all G ∈ 〈OX ,OX(1),OX(2)〉}
= {F ∈ Db(X) | Ext∗(OX , F (−t)) = 0 for 0 ≤ t ≤ 2}.

Via [MS19, Proposition 2.4], we see that Db(X) = 〈AX ,OX ,OX(1),OX(2)〉 is a semiorthog-
onal decomposition.

Definition 4.2 (D-associated K3 surfaces). A cubic fourfold X admits a (D-)associated K3
surface S if the K3 category AX is equivalent to the derived category Db(S).

Addington and Thomas [AT14] conjectured that the conditions for the existence of an
associated K3 surface in the senses of Hodge theory (Definition 3.3) and of derived categories
should be equivalent. They proved that this is generically true:

Theorem 4.3 ([AT14, Theorem 1.1]). A cubic fourfold X admits a D-associated K3 surface
implies that it admits a Hodge-associated K3 surface, i.e., belongs to Cd for some d not
divisible by 4, 9 and any odd prime p ≡ 2 (mod 3). Conversely, for every such d, there
exists a Zariski open subset in Cd where each member admits a D-associated K3 surface.

4.2 The rationality conjecture and motivation

Hassett [Has99, Theorem 4.2] found a locus Cδ of codimension one in C8 which parametrizes
rational cubic fourfolds. Notice that a general member of C8 has no associated K3 surface
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4.2 THE RATIONALITY CONJECTURE AND MOTIVATION

due to Theorem 3.4. Nevertheless, Kuznetsov [Kuz10, Theorem 4.3] observed that a general
X ∈ C8 admits an associated twisted K3 surface S in the sense that

AX ∼= Db(S, α)

where Db(S, α) is the bounded derived category of coherent sheaves on S twisted by the
Brauer class α ∈ Br(X) := H2

ét(S,Gm). Moreover, the class α is trivial if and only if X
belongs to Cδ [Kuz10, Proposition 4.7]. This fact, together with Hassett’s result, motivates
the following conjecture:

Conjecture 4.4 ([Kuz10, Conjecture 1.1]). A cubic fourfold is rational if and only if it
admits an associated K3 surface.

In the following, let us review the geometric construction behind the above facts.

4.2.1 Cubic fourfolds containing a plane Let X ⊂ P5 be a cubic fourfold containing a plane
P and let h ∈ Pic(X) denote the class of hyperplane sections. Then the classes h2 and [P ]
in H4(X,Z) span a sublattice with intersection matrix(

3 1
1 3

)
.

This is a labelling of discriminant 8, thus X ∈ C8. As all planes in P5 are projectively
equivalent, this shows that every cubic fourfold containing a plane belongs to C8.

Proposition 4.5. A cubic fourfold X ⊂ P5 contains a plane if and only if X ∈ C8.

Proof. It remains to prove the converse. In fact, this is a consequence of the numerical char-
acterization given by Voisin [Voi86, §3]. Here we provide a proof based on the irreducibility
of C8 [Has00, Theorem 3.2.3]. Let IP denote the ideal sheaf of a plane P ⊂ P5. Then a
straightforward computation shows that |IP (3)| has dimension 45 and the stabilizer of P in
PGL6(C) has dimension 26. It follows that the moduli of cubic fourfolds with a plane has
dimension 45−26 = 19, so there exists a Zariski open subset in C8 parametrizing such cubics.
This implies that every member of C8 contains a plane because a plane can only deform to
a plane in P5.

The projection of P5 from a plane P defines a rational map onto P2 fibered in the 3-planes
containing P . Each of these 3-planes cut out on X the union of P with a quadric surface.
Therefore, the restriction of the projection defines a rational map f : X 99K P2 fibered in the
residual quadric surfaces. Resolving f by blowing up at P gives the diagram

Q := BlPX

ε

��

f ′

%%

X
f

// P2

(4.1)

where f ′ : Q → P2 is a morphism fibered in quadratic surfaces. Notice that the generic fiber
of Q can be considered as a quadric surface defined over the function field C(P2).
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4.2 THE RATIONALITY CONJECTURE AND MOTIVATION

Proposition 4.6. Let Q ⊂ Pn be a smooth quadratic hypersurface over an arbitrary field k.
Then the following statements are equivalent:

(1) Q is rational.

(2) Q has a k-rational point.

(3) Q has a k′-rational point where k′/k is an extension of odd degree.

Proof. The implications (1) ⇒ (2) ⇒ (3) are trivial. The converse (2) ⇒ (1) holds as the
projection from a k-rational point p ∈ Q defines a birational map Q 99K Pn−1 over k. The
other converse (3)⇒ (2) follows from Springer’s theorem, see [EKM08, Corollary 18.5]. This
completes the proof.

Let us remark that an elegant proof for (3) ⇒ (2) when Q is a surface can be found in
[Has99, Proposition 2.1]. In this case, the Fano scheme F (Q) of lines on Q consists of two
copies of P1, and the Abel–Jacobi map CH0(Q) −→ CH0(F (Q)) assigns to a 0-cycle the sum
of the lines passing through it. Under this map, a 0-cycle on of odd degree on Q corresponds
to a 0-cycle on F (Q) with odd degree on each of the P1-components, which can then be
twisted to be of degree one on each P1 by the canonical class. The last cycle represents two
lines on Q which belong to different families of rulings, so their intersection is a rational
point.

By Proposition 4.6, the generic fiber of Q is birational to the projective plane over C(P2)
if and only if it has a C(P2)-rational point of odd degree. In other words, Q itself, and thus
the cubic fourfold X, is rational if and only if Q has a multisection of odd degree.

Lemma 4.7. Let W ⊂ X be a surface. Then the degree of its strict transform on Q as a
multisection of Q → P2 equals the number

δ(W ) := deg(W )− [W ] · [P ].

Proof. In the Picard group of Q, let ` be the pullback by f ′ the class of a line in P2 and e
be the exceptional divisor of the blowing-up ε : Q → X. Then we have ` = ε∗h− e, and the
class of a fiber of Q → P2 is given by

`2 = (ε∗h− e)2 = ε∗h2 − 2(ε∗h)e+ e2.

Then the degree of W as a multisection equals

ε∗[W ] · `2 = [W ] · h2 − 0 + ε∗[W ] · e2 = deg(W )− [W ] · [P ]

as desired.

Theorem 4.8 ([Has99]). If a cubic fourfold X contains a plane P and a surface W with odd
δ(W ), then it is rational. Such cubics are parametrized by a locus Cδ of a countably infinite
union of divisors in C8.

Proof. The first statement follows from Lemma 4.7 and the description right before the
lemma. For the second statement, observe that δ(h2) = 3 − 1 = 2 and δ(P ) = 1 − 3 = −2,
hence a very general member of C8 does not contain a surface W with δ(W ) odd. Then the
result follows from [Has16, Proposition 12] and the existence of cubic fourfolds containing
disjoint planes.
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4.2 THE RATIONALITY CONJECTURE AND MOTIVATION

4.2.2 Associated twisted K3 surfaces Here we review the construction of the twisted K3
surface associated to X. We will focus only on the geometric aspects and leave the technical
details about derived categories to [Kuz10].

Lemma 4.9. Suppose that X ∈ C8 is general. Then the fiber quadrics of f : X 99K P2 are
degenerate over a smooth sextic curve C ⊂ P2.

Proof. This is well known and one can find a proof, e.g., in [Kuz10, Lemma 4.1]. Here we
take an elementary approach. Let {x0, . . . , x5} be a set of homogeneous coordinates on P5

and assume that P = {x0 = x1 = x2 = 0}. Then there exists quadrics Q0, Q1, Q2 such that
X ⊂ P5 is defined by a polynomial of the form

F (x0, . . . , x5) := x0Q0 + x1Q1 + x2Q2.

Let us express an arbitrary point in the base P2 as [1 : a : b] without loss of generality. Then
the preimage of [1 : a : b] under f is determined by

F (1, a, b, x3, x4, x5) = 0

which is a non-homogeneous quadric in x3, x4, x5. Due to the generality of X, the Hessian
of this quadric is a sextic non-homogeneous polynomial in a and b and defines a smooth
sextic curve C ⊂ P2. Because a quadric degenerates if and only if its Hessian vanishes, this
completes the proof.

Let us assume that X ∈ C8 is general enough so that Lemma 4.9 holds and the degenerate
fibers of f ′ : Q → P2 are at worst cones over conics (instead of unions of two planes). In this
setting, the double cover over P2 branched over C is a K3 surface S. On the other hand, the
relative Fano variety of lines

F (Q/P2) = {lines contained in the fibers of Q → P2}

consists of two disjoint copies of P1 on a smooth fiber and a single P1 on a degenerate fiber.
It follows that the base change

M := S ×P2 F (Q/P2)

��

// F (Q/P2)

��

S // P2

induces a P1-fibration M → S, which then corresponds to a class α ∈ Br(S). Kuznetsov
showed that there is an equivalence

AX ∼= Db(S, α). (4.2)

This relation was built up by a semiorthogonal decomposition of Db(Q) on one hand, the
expression of Db(S, α) as certain derived category on P2 via the double cover S → P2 on the
other hand, and then compare these structures via the resolution diagram (4.1). We refer
the reader to [Kuz10, Theorem 4.3] for the details.
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Lemma 4.10.

(a) There exists a map

{multisections of Q → P2} −→ {multisections of M→ S}

which preserves the degrees of multisections.

(b) There exists a map

{multisections of M→ S} −→ {multisections of Q → P2}

which raises the degree of a multisection from d to d2.

Proof. This is the main content of [Kuz10, Proposition 4.7]. To prove (a), let us start
with a multisection T ⊂ Q of degree d. Then T meets each fiber in d points counted with
multiplicity. If the fiber is smooth, then there are d lines in each of the two families of rulings
incident to the d points. If the fiber is degenerate, then the same thing holds though there
is only one family of rulings. These lines correspond to d points in each fiber of M, thus T
determines a multisection of M→ S of degree d.

Now we prove (b). Let R ⊂ M be a multisection of degree d. Pick a general point
p ∈ P2, let p′, p′′ ∈ S be its preimage points under the double cover S → P2, and let Mp′

andMp′′ be their preimage fibers in the P1-fibrationM→ S. On the fiber quadric Qp ⊂ Q
over p, the intersections R ∩Mp′ and R ∩Mp′′ correspond respectively to d lines in each
of the two families of rulings, and these 2d lines meet in totally d2 points on Qp. Varying p
gives a multisection of degree d2 on Q.

Proposition 4.11. The following statements are equivalent:

(1) The class α vanishes, i.e., AX ∼= Db(S) by (4.2).

(2) The P1-fibration M→ S admits a multisection of odd degree.

(3) The quadric fibration Q → P2 admits a multisection of odd degree.

(4) X ∈ Cδ, i.e., X contains a surface W such that δ(W ) = deg(W )− [W ] · [P ] is odd.

Proof. The equivalence (1)⇔ (2) follows from the geometric interpretation of brauer classes.
The equivalence (2) ⇔ (3) follows from Lemma 4.10. The equivalence (3) ⇔ (4) is a conse-
quence of Lemma 4.7.

4.3 Known examples of rational cubic fourfolds

One of the implications in Conjecture 4.4 is still wide open, namely, among the cubic fourfolds
without an associated K3 surface, none of them is proved to be irrational. On the other hand,
there are a few types of cubics with associated K3 surfaces are known to be rational. Before
reviewing these examples, let us recall a result by Kontsevich and Tschinkel:
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Theorem 4.12 ([KT19, Theorem 1]). Let B be a smooth connected curve over a field of
characteristic zero. Suppose that there are smooth proper morphisms

π : X → B and π′ : X ′ → B

whose generic fibers are birational over the function field of B. Then, for every closed point
b ∈ B, the fibers of π and π′ over b are birational over the residue field at b. In particular,
if the generic fiber of π is rational, then every fiber of π is rational.

Due to this theorem, to prove that the cubic fourfolds parametrized by an irreducible
locus D ⊂ C (e.g. Cd ⊂ C) are all rational, it is sufficient to prove that D contains a Zariski
open subset whose members are rational. For example, the locus CPf ⊂ C14 of Pfaffian cubic
fourfolds contains a subset which is Zariski open in C14, so the members of C14 are all rational
because Pfaffian cubic fourfolds are rational.

In fact, the rationality of all members of C14 was first proved by Bolognesi, Russo, and
Staglianò via degenerations of quartic scrolls [BRS19]. Besides C14, there are loci also known
to parametrize rational cubic fourfolds:

• The divisors C26, C38, and C42 [RS19,RS20].

• Countably infinite collections of divisors in C8 [Has99] and C18 [AHTVA19].

• Some divisors in C20 [FL20].

This list is organized with respect to the methods for establishing the rationality. In the
following, we will sketch these constructions case by case with respect to the list.

4.3.1 Congruences of conics 5-secant to a surface Computations with Macaulay2 [GS21]
form an essential part in Russo and Staglianò’s approach to the rationality. Their main idea
is to verify that a general X ∈ Cd, where d = 26, 38, 42, contains an irreducible surface S = Sd
which admits a special family H of curves which they call a congruence of (3e − 1)-secant
curves of degree e.

More precisely, a general C ∈ H is a smooth rational curve of degree e that intersects S
in 3e−1 points counted with multiplicity and, for a general p ∈ P5, there exists one and only
one such curve passing through p. The space H and the universal family H̃ form a diagram

H̃
π

��

θ

��

H P5

where θ is birational. Notice thatH is irreducible and of dimension 4 in this setting. Suppose
that X meets a general C ∈ H transversely. Then the intersection X∩C consists of 3e points
with 3e− 1 of them lying on S, which realizes X as a rational section of π : H̃ → H, hence
X is birational to H. According to [RS19, Theorem 1], if the rational map

ϕ : P5 // |IS(3)| ∼= Pn.
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4.3 KNOWN EXAMPLES OF RATIONAL CUBIC FOURFOLDS

is birational onto its image, then the members of |IS(3)| with at worst rational singularity
realize as sections as above. In particular, they are rational provided that H is rational.

Notice that a cubic hypersurface Y ⊂ P5 with an ordinary double point q ∈ Y is rational
as the projection from q defines a birational map Y 99K P4. Therefore, to prove that H is
rational, it is sufficient to find one member of |IS(3)| with an ordinary double point. Another
method to establish the rationality of H is via the trisecant flops introduced in [RS20, §2].
The benefit of the second approach is that it is able to reveal the birational incarnations of
the associated K3 surfaces in the rational parametrizations.

Remark 4.13. In the case d = 26, the surface S26 ⊂ P5 is a septic surface with a node,
constructed as the projection of a septic del Pezzo surface Σ ⊂ P7 from a line which meets
the secant variety Sec(Σ) transversely at one point. In the case d = 38, the surface S38 ⊂ P5

is a smooth surface of degree 10 and sectional genus 6, obtained as the image of P2 via
the linear system of curves of degree 10 with 10 fixed triple points. In these two cases, the
congruences consist of 5-secant conics. For d = 42, the construction of S42 requires a lot
more space to describe, so we refer the reader to the original paper [RS20, §4.1].

4.3.2 Fibrations in rational surfaces over the plane As exhibited in §4.2.1, every cubic
fourfold X ∈ C8 contains a plane P , and the projection from P induces a quadric fibration

Q := BlPX −→ P2

which is rational if and only if it admits a multisection of odd degree. Moreover, the last
condition characterizes a countably infinite collection of divisors in C8.

The situation for C18 is similar. In this case, a general X ∈ C18 contains an elliptic ruled
surface T ⊂ X, that is, a fibration in lines over an elliptic curve, such that the system of
quadrics passing through T defines a rational map

Π: P5 // P2

whose base locus is T union with two planes [AHTVA19, Theorem 2]. The surface T is cut
out by cubics in P5 [AHTVA19, Proposition 4], so the restriction of Π to X defines a rational
map with exactly T as the base locus. Resolving this map gives the diagram

S := BlTX

��

π′

%%

X π
// P2

where the generic fiber of π′ is a del Pezzo surface of degree 6 [AHTVA19, Theorem 6]. Let
us remark that, if S ⊂ X is the image of a general fiber of π′, then the classes h2 and [S]
span a sublattice in H4(X,Z) with intersection matrix(

3 6
6 18

)
(4.3)

which is a labelling of discriminant 18. Similar to quadric surfaces, we have the following
property about the rationality of sextic del Pezzo surfaces:
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Proposition 4.14 ([AHTVA19, Proposition 8]). Let S be a sextic del Pezzo surface over a
perfect field k. Then the following statements are equivalent:

• S is rational over k.

• S contains a k-rational point.

• S contains a k′-rational point for some extension k′/k of degree prime to 6.

By Proposition 4.14, the cubic fourfold X is rational if there exists a surface Σ ⊂ X which
lifts to a section of π′. An analysis on lattices shows that such cubics form a codimension
one locus in C18. More precisely, [Σ] ∈ H4(X,Z) and the labelling (4.3) span a sublattice3 6 a

6 18 1
a 1 b

 of discriminant ∆ = −3 + 12a− 18a2 + 18b. (4.4)

We can set a = −1, 0, 1 upon replacing [Σ] with [Σ]+m(2h2− [S]) for a suitable m ∈ Z, thus
positive integers ∆ ≡ 9 (mod 12) arise as discriminants, each for precisely one lattice. For
every such ∆, let C∆ ⊂ C18 be the divisor of X labelled by (4.4). Then all but finitely many
C∆ is nonempty, and the union

⋃
C∆ ⊂ C18 gives the desired locus. We refer the reader to

[AHTVA19, §4] for the details about this part.

4.3.3 Birational maps defined by the Veronese surface Let X ⊂ P5 be a cubic fourfold
containing a Veronese surface V , namely, the embedding of P2 into P5 via the linear system
of conics. Then the classes h2 and [V ] span the labelling(

3 4
4 12

)
⊂ H4(X,Z)

of discriminant 20, which shows that X ∈ C20. On the other hand, it can be proved that
every member of C20 \ C8 contains V [FL20, Proposition 2.1]. Notice that the rational cubic
fourfolds introduced previously all belong to Cd with d in the list

{8, 14, 18, 26, 38, 42}. (4.5)

The following result gives loci of rational cubic fourfolds in C20 outside these divisors.

Theorem 4.15 ([FL20, Theorem 1.3]). There exists a birational involution σ on C20 such
that, for each d = 26, 38, 42, it maps a component of the intersection C20 ∩ Cd birationally
onto a divisor D ⊂ C20 not contained in Cd′ for all d′ in (4.5). In particular, there exist
at least three irreducible divisors in C20 consisting of cubic fourfolds whose rationality is not
known before.

The birational involution σ is constructed from the surface V . More precisely, the linear
system of quadrics cutting out V has dimension 5, thus defines a rational map

F : P5 ∼ // P5 (4.6)
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which turns out to be birational (see Remark 4.16). Up to a change of coordinates, we may
assume that it is involutive, i.e., F = F−1, and is defined by the 2-minors of the symmetric
matrix x0 x1 x5

x1 x2 x3

x5 x3 x4

 . (4.7)

The exceptional divisor of F coincides with the secant variety of V , where the latter is defined
by the determinant of (4.7), thus is a cubic hypersurface singular along V . Therefore, the
restriction of F to a smooth cubic X ⊂ P5 containing V induces a birational map

f : X ∼ // X ′ where X ′ = F (X) ⊂ P5.

Notice that this can be resolved by a single blowup as below

Y := BlVX
π

yy

π′

&&

X ∼
f

// X ′.

(4.8)

Remark 4.16. A birational automorphism of Pn is called a Cremona transformation. The
map F is one of the only seven types of Cremona transformations with an irreducible smooth
curve or surface as base locus [CK89, Theorems 2.2 & 3.3]. If one allows surfaces with at
worst non-normal double points, then there is only one additional possibility, which are
Cremona transformations of P4 with base loci birational to K3 surfaces of degree 12. We
refer the reader to [HL18] for the details.

Lemma 4.17. The variety X ′ ⊂ P5 is a cubic hypersurface containing V .

Proof. One way to prove the statement is to resolve F as

Γ := BlV P5

π1

yy

π2

%%

P5 ∼
F

// P5

and then to compute the strict transform of X ′ to Γ in the Picard group in terms of the
pullback of the hyperplane class under π2 and the exceptional divisor of π1. We refer the
reader to [FL20, Proposition 3.2] for the details. Here we provide an elementary approach.
Suppose that F is expressed explicitly as

yi = Qi(x0, . . . , x5), i = 0, . . . , 5, (4.9)

where Q0, . . . , Q5 are quadrics that cut V out in P5. Then X is defined by a polynomial
of the form

∑5
i=0 LiQi where L0, . . . , L5 are linear in x0, · · · , x5. Since F = F−1, we can

express F−1 in the same way as (4.9) with xi replaced by yi and vice versa. Therefore, X ′

is defined by the polynomial
∑5

i=0 Liyi where L0, . . . , L5 are linear in Q0(y), . . . , Q5(y). In
particular, X ′ is defined by a cubic equation in y0, . . . , y5 vanishing along V .
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From Lemma 4.17, we get a birational involution

σ : C20
∼ // C20 : X � // F (X) (4.10)

and we would like to know how it acts on the intersection C20 ∩ Cd, especially for d in the
list 4.5. An intersection-theoretic computation on the resolution (4.8) shows that a very
general X ∈ C20 ∩ Cd is taken to X ′ ∈ C20 such that there is a transformation law

H2,2(X,Z) ∼=

3 4 a
4 12 b
a b c

 � //

 3 4 4a− b
4 12 b

4a− b b c+ (3a− b)2

 ∼= H2,2(X ′,Z).

Theorem 4.15 was then proved by analyzing which labellings can be contained in the right
hand side. As an explicit example, one can find a component D ⊂ C20 ∩ C26 on which the
transformation law has the form3 4 1

4 12 1
1 1 9

 � //

3 4 3
4 12 1
3 1 13

.
Then a computation shows that the lattice on the right bears a labelling of discriminant 146
but no labelling of discriminant listed in (4.5) [FL20, Theorem 3.13]. (The discriminants 2
and 6 also need to be ruled out in order to confirm that the image cubics are smooth.) Notice
that 146 satisfies the criterion for the existence of an associated K3 surface (Theorem 3.4).
As a consequence, the image component σ(D) ⊂ C20 ∩ C146 parametrizes cubic fourfolds
whose rationality is not known before.

Remark 4.18. Two cubic fourfolds X and X ′ are called Fourier–Mukai partners if their K3
categories AX and AX′ are equivalent. The involution (4.10) takes a very general member
of C20 to its unique non-isomorphic Fourier–Mukai partner [FL20, Theorem 1.1].
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