A tour of the rationality problem of cubic fourfolds
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Abstract

The rationality problem in algebraic geometry studies whether a given variety ad-
mits a parametrization by a projective space, and how to construct a good one that
faithfully reflects the geometry of the variety. Cubic fourfolds, i.e., smooth complex
cubic hypersurfaces in P°, form the simplest type of examples whose rationality is still
poorly understood. They have received much attention in recent years due to the sim-
ple construction as well as their intriguing relationship with K3 surfaces. The purpose
of this note is to give an overview of this subject to a broad audience in algebraic ge-
ometry, with an emphasis on examples and how these examples inspired the formations
of conjectures and recent developments.

1 Introduction

An algebraic variety X of dimension n defined over a field k is called rational if its function
field is isomorphic to the field of rational functions in n independent variables, or equivalently,
if there exists a birational map X - = -+P". Otherwise, we call X irrational. Projective
spaces are clearly rational. A quadratic hypersurface Q C P"" with a k-rational point
p € @ is also rational as the stereographic projection from p maps ) birationally onto P".
For smooth cubic hypersurfaces defined over C, it is known that:

e Every cubic curve E C P? is an elliptic curve, thus is irrational.

e Every cubic surface S C P? is rational as it is the blowup of P? at six points. (See, for
example, [Bea96, Theorem IV.13].)

e Every cubic threefold Y C P? is irrational by Clemens and Griffiths [CG72]. They
proved this by showing that the intermediate Jacobian of Y cannot be a product of
Jacobians of curves, which must occur for a rational threefold.

For cubic fourfolds X C PP°, it is expected that a very general one is irrational, through
there is no example found so far. On the other hand, there exist some evidences indicating
that certain type of cubic fourfolds are rational. To make this more precise, consider the
Zariski open subset U C |Ops(3)| of smooth cubic polynomials up to rescaling. Then the
moduli space of cubic fourfolds is given as the quotient

C = [U/PGL4(C)]
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PFAFFIAN CUBIC FOURFOLDS

in the sense of geometric invariant theory [MFK94, §4.2]. This is a Deligne-Mumford stack
with a quasi-projective course moduli space of dimension 20. A cubic fourfold is called
special if it contains an algebraic surface not homologous to a complete intersection. They
form countably many irreducible divisors C; C C indexed by the integers

d>8 and d=0,2 (mod 6). (1.1)

Moreover, every X € C; can be associated with a K3 surface in terms of Hodge theory
provided that, in addition,

d is not divisible by 4,9, or any odd prime p =2 (mod 3). (1.2)

The rationality conjecture for cubic fourfolds, formulated originally by Kuznetsov [Kuz10,
Conjecture 1.1] in terms of derived categories, states that a cubic fourfold is rational if and
only if it admits an associated K3 surface.

This article consists of three parts. In Section 2, we discuss Pfaffian cubic fourfolds,
namely, the cubic fourfolds that are defined by the Pfaffians of 6 x 6 matrices in linear
polynomials. As examples of rational cubic fourfolds, their rationality and associated K3
surfaces can be constructed in explicit ways, and these constructions have inspired many of
later developments in the subject. In Section 3, we review a global picture established by
Hassett [Has00] which involves all cubic fourfolds. The notions of special cubic fourfolds,
associated K3 surfaces, and the main ideas behind the numerical conditions (1.1) and (1.2)
will be introduced here. In Section 4, we give an overview of the rationality conjecture, its
motivation, and the evidences that have been discovered so far.

2 Pfaffian cubic fourfolds

Recall that the Pfaffian of a 2n x 2n skew-symmetric matrix A is pf(A) = /det(A). Pfaffian
cubic fourfolds are smooth cubics X C P° defined by equations of the form pf(A) = 0 where
A is a 6 X 6 matrix in linear forms of P°. The study of such cubics can be dated back to 1940s
and has received the attentions from many experts involving Morin [Mor40], Fano [Fan43],
Tregub [Tre84, Tre93], and Beauville-Donagi [BD85]. They appear as examples of rational
cubic fourfolds whose rationality and associated K3 surfaces can be constructed in relatively
simple and explicit ways. In the following, we will review these constructions as well as how
these cubics distribute in the moduli space.

2.1 Construction and the associated K3 surfaces

Let V be a complex vector space of dimension 6 and consider the space A2V of bivec-
tors. Then the degenerate bivectors in the space P (A%V) = P form a hypersurface
Pf(V) C P(A%V) which is a cubic defined by the Pfaffian of a 6 x 6 skew-symmetric matrix
in independent variables. The hypersurface Pf(V') is singular along the locus of bivectors
of rank at most 2, which coincides with the Grassmannian Gr(2,V) C P (A?V) under the
Pliicker embedding. In particular, we have a filtration

Gr(2,V) C PE(V) C P (A?V).
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The same construction on the dual space V* gives another filtration
Gr(2,V*) C PE(V*) C P (A*VF).

Notice that each Grassmannian has codimension 6 in the ambient P'*. Hence, for a general
5-plane H C P (A?V*), the intersection

X :=HNPf(V*)C H=P (2.1)

is a Pfaffian cubic fourfold. On the other hand, the collection of linear forms on P (A2V*)
vanishing along H forms the dual 8-plane H+ C P (A?V). Taking intersection with Gr(2, V)
produces a smooth surface

S:=H"NGr(2,V)c H- =P8, (2.2)

Proposition 2.1. The surface S C P® has degree 14 and is simply connected with trivial
canonical bundle, i.e., S a polarized K3 surface of degree 14.

Sketch of proof. The surface S C P® has degree 14 follows from the fact that Gr(2,V) has
degree 14 under the Piicker embedding, which can be verified via the Schubert calculus. It
is simply connected due to the fact that Gr(2,V) is simply connected and the Lefschetz
hyperplane theorem. To compute the canonical bundle, let ¢/ denote the tautological bundle
of Gr(2,V). Then the Piicker embedding corresponds to the line bundle O(1) = A2U*, and
the result follows by computing that Kgy 21y = O(—6) and the adjunction formula. m

Remark 2.2. For a variety Y C P, its projective dual Y* C (P™)* is defined as the collection
of hyperplanes tangent to Y, or more precisely,

Y*={H € (P*)* | H D T,Y for some smooth point p € Y'}.
Moreover, we have Y** =Y by the reflexivity theorem. In our setting, the two varieties
Gr(2,V) CP(A’V) and PE(V*) CP(A*VY)

appear as the projective duals to each other. (See, for example, [BC09, Proposition 1.5])
This provides the basis for Kusnetsov’s homological projective duality which was used to
show that the K3 category of the Pfaffian cubic X is equivalent to the derived category
D*(S) of the associated K3.

2.1.1 Fano variety of lines as hyperkihler fourfolds The Fano variety F(X) of lines on X
is a smooth fourfold. In [BD85], Beauville and Donagi constructed an isomorphism

Sk~ P(X) (2.3)
where SP is the Hilbert scheme of length two subschemes on S. Let us review how this map

is defined: Since S appears as a general linear section on Gr(2,V), every point p + ¢ € SZ
determines a subspace (p,q) C V of dimension 4 in the following ways:
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e If p and ¢ are distinct points on S, then they correspond to disjoint subspaces in V' of
dimension 2, which span the subspace (p,q) C V.

e If p + g represents a nonreduced subscheme of S, then it corresponds to an element
p € Gr(2,V) with a linear map ¢: p — V/p up to rescaling. In this case, we can define
(p,q) C V as the preimage of Im¢ C V/p under the quotient V" — V/p.
The 2-forms in H that vanish along (p,q) form a linear subspace (p, ¢)-. It turns out that
this is a line contained in X. (See Lemma 2.3.) The map (2.3) is defined by sending p + ¢
to (p,q)*". We refer the reader to [BD85, Proposition 5 (i)] for the proof that it is an
isomorphism.

Lemma 2.3. The linear subspace (p,q)** C H is a line contained in X .

Proof. All of the 2-forms that vanish along (p, ¢) form an 8-plane (p, q}LP(MV*) in P(A?V*)
and we have (p,¢)*" = (p, )PV N H. As H = H**, the subspace (p,¢)*" is cut out
by the hyperplanes parametrized by H+. Notice that p and ¢ are chosen from H* and
they correspond to hyperplanes passing through (p, q)LP(AQV*), so H+ imposes 9 —2 = 7
independent conditions on (p, )PV, It follows that (p,¢)*" has codimension 7 in the
8-plane (p, q>m(A2v*) and thus is a line. Moreover, the 2-forms vanishing along (p, q) are
necessarily degenerate, so the line (p, ¢)*# is contained in H NPf(V*) = X O

2.1.2  Relations among the Hodge structures The isomorphism F(X) 2 S from (2.3) and
the lattice structure on H?(S®, Z) induced by the Beauville-Bogomolov-Fujiki form build
up the isomorphisms

H*(F(X),z)= H*S® 2) =75 ®, H*(S,Z), 6-0=—2. (2.4)

Here 26 corresponds to the divisor of S that parametrizes nonreduced subschemes, and the
pairing on H?(S,Z) coincides with the intersection product on S. On the other hand, the
incidence relation

Y i={(z,0) € X x F(X) |z €} 25 F(X)

pll
X
determines the Abel-Jacobi map

a: HY(X,Z) — H*(F(X),Z) : v+— pa,piv

which is an isomorphism of abelian groups. Let h € H?(X,Z) be the class of hyperplane
sections and let g € H?(F(X),Z) be the polarization coming from F(X) C Gr(2,6) C P*
where the second inclusion is the Pliicker embedding. Then a(h?) = g [BDS85, §3], and «
restricts to an isomorphism between the primitive parts :

o+ HY (X, Z) prim —— H*(F(X), Z) prim(—1)

which preserves the Hodge and lattice structures [BD85, Proposition 6]. Together with (2.4),
this induces a saturated embedding

H*(S,Z) prim(—1)—— HY(X, Z) prim-
This makes S an example of a Hodge-associated K3 surface which will be defined in §3.3.
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2.2 Approaches to the rationality

Here we exhibit a few methods about proving that every Pfaffian cubic fourfold is rational.
One of them uses the construction in §2.1 directly. The others use the fact that such a cubic
contains special algebraic surfaces.

2.2.1 Direct application of the construction This method was taken by Beauville and Don-
agi [BD85] to prove the rationality. From (2.1) and the fact that X is disjoint from Gr(2,V*),
we see that every point [¢] € X is represented by a linear map ¢: V' — V* such that
ker o C V has dimension exactly 2. Consider the incidence variety Z C P(V) x X defined
by

Z={([v],[¢]) e P(V) x X | v €kerp} —= X

|

P(V).
Note that the fiber of each [¢] € X under 7y is of the form

3 ([]) = P(kerp) = P!

which is a line in P(V') under the map ;. Since 7 is birational due to Lemma 2.4 below,
the map 7, induces a birational map from a general P* C (V) onto X.

Lemma 2.4. The morphism m: Z — P(V) is birational.

Proof. Let v € V be a nonzero vector. By linear algebra, the set of [¢] € P(A?V*) such
that ¢(v) = 0 is a 9-plane L, contained in Pf(V*). Recall that X = H N Pf(V*) where
H is a 5-plane. Then L, and H meet in a linear subspace within X of dimension at least
(94 5) — 14 = 0. This implies that 7 is surjective with connected fibers, which forces it to
be birational as dim(Z) = dim(P(V)) = 5. O

2.2.2  Using quintic del Pezzo surfaces A cubic fourfold X is Pfaffian if and only if it
contains a quintic del Pezzo surface 7' C X [Bea00, Proposition 9.2 (a)]. Recall that T
is abstractly isomorphic to the blowup of P? at four points in general positions, and its
embedding into P° is defined by the anti-canonical system. In the following, we say that a
line ¢ C P? is secant to T if it intersects T' in two points counted with multiplicity. Notice
that every such line meets X at one and only one point outside 7. Suppose that

(1) a general point p € P° lies on a line secant to T, and

(2) the family of lines secant to 7" is parametrized by a rational fourfold .

Consider the fibration 7: W — W where n~(p) is the secant line parametrized by p € W.
Then the above hypothesis realizes X as a rational section of 7, which implies that X
is birational to W and thus rational. In the following, we introduce one of the ways in
establishing these conditions.
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Lemma 2.5. Let Zr be the ideal sheaf of T C P°. Then h°(P°, Zr(2)) = 5 and Zr(2) is
generated by global sections.

Proof. Using the short exact sequence 0 — Zyr — Ops — O7 — 0 and the Riemann—
Roch formula for 7', one can verify that

RO(P°, Z1(2)) = h°(P°, Ops (2)) — h°(T, O7(2)) = 21 — 16 = 5.

Similar computations imply h'(P° Zr(1)) = h*(P°,Zr) = 0, so the Castelnuovo-Mumford
regularity of Zr equals 2, whence Z7(2) is generated by global sections. O

By Lemma 2.5, the linear system |Zr(2)| defines a rational map f: P° --+ P* which can
be resolved by a blowup along T', as depicted below

Y = BlyP?
| ™
Po- - - - 3P,

Because f is defined by the quadrics passing through 7', a line secant to T' is contracted by
this map. On the other hand, we have that

Proposition 2.6. A general fiber of f appears as a line secant to T.

Proof. In the Picard group of Y, let H (resp. H') denote the pullback of the hyperplane
class on P° (resp. P*) and E be the exceptional divisor of the blowup ¥ — P?. Due to the
construction of f, these classes satisfy the relation H' = 2H — E, and the class corresponds
to a general fiber of f equals H'*. We want to show that

HH" =HQ2H -E)'=1 and EH" =EQ2H - E)' =2 (2.5)

as the former (resp. the latter) says that a general fiber is a line (resp. is secant to 7). To
compute these intersection numbers, first recall that the Segre class of i: T < P? is given
by s(T,P°) = e¢(Ngyps) ' = ¢(T) - i*c(P®)~". Let h € Pic(T) denote the class of hyperplane

sections. Then for each k = 0,...,5, a straightforward computation shows
(1 if k=0
it k=1,2
H7FEF = (—1)F! / RF.s(T,P°) =45 if k=3
! 25 if k=4
(82 if k=5
Then the result follows by inserting these numbers back to (2.5). ]

Proposition 2.6 implies condition (1) immediately. It also implies that the family of secant
lines of T is birationally parametrized by the codomain P* of the map f, thus establishes
condition (2). This concludes that X is rational. Notice that the strict transform of the
cubic X to the blowup Y appears as a rational section of f’.
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Remark 2.7. Let m,: T — P* be the projection from a general point p € P°. Using the
double point formula [Ful98, Theorem 9.3, one can verify that the image 7,(7") is singular
along one double point, which implies that p lies on one and only one secant line of T', and
thus establishes (1). Condition (2) can be confirmed by the fact that the Hilbert scheme of
length two subschemes on a rational surface is rational. (See, for example, [ABCH13, §10.1].)
This provides a slightly different approach to the rationality.

Remark 2.8. The idea presented in this section has been generalized by Russo and Stagliano
to produce new examples of rational cubic fourfolds [RS19, RS20]. In their construction,
secant lines are replaced by rational curves of higher degrees that intersect a surface in a
cubic fourfold with higher multiplicities. We will review their results in §4.3.

2.2.3 Using quartic scrolls Let X be a Pfaffian cubic fourfold and S be its associated K3
surface. Recall from (2.3) that there is an isomorphism

F(X)—— skl

The locus on SP that parametrizes nonreduced subschemes is naturally isomorphic to the
projective tangent bundle P(T'S). Under the above isomorphism, the P!-fibers of this bundle
correspond to rational curves R C F'(X), which then induce a family of quartic scrolls ¥ C X
parametrized by S [HT01, Example 7.7]. The surface ¥ C P® is isomorphic to either

e P! x P! embedded via the system |Opi,p1(1,2)], or

e the Hirzebruch surface Fo embedded via |Op,(h + f)| where h (resp. f) is the class of
a section (resp. of a fiber) so that f2 =10, f-h =1, and h? = 2.

The second case is a specialization of the first. (For this fact, we refer the reader to [Lail7,
Proposition 4.1 (3)] for a general description about how rational scrolls of different types
distribute in the Hilbert scheme.)

Proposition 2.9. In both cases, the system of quadrics passing through X defines a rational
map g: P5 ——» P° that can be resolved by blowing up X, as depicted below

Y := BlgP?
P5- -2 55,

Moreover, the image of g is a quadratic hypersurface Q C P°, and a general fiber of g is a
line secant to X.

Sketch of proof. The first statement can be proved in the same way as Lemma 2.5. Here
we refer the reader to [Lail7, Lemma 1.1] if they need data about sheaf cohomologies on
Hirzebruch surfaces during their computation. The remaining part of the proposition can
be verified using intersection theory as in Proposition 2.6. For example, to see that the
image is a quadric ) C P°, we first denote by H € Pic(Y) (resp. H' € Pic(Y)) the pullback



2.3 CUBIC FOURFOLDS CONTAINING DISJOINT PLANES

of the hyperplane class in the domain of g (resp. the codomain of g) and let E € Pic(Y)
be the exceptional divisor of e. Then H' = 2H — E. One can compute that H'> = 0 and
HH' = 2, where the former says that ¢ is not dominant, and the latter implies that the
image g(P°%) C P° is either

(i) a hyperplane and the preimage under g of a general line in P° is a conic, or
(ii) a quadric and the preimage under g of a general line in P consists of two lines.

Condition (i) is impossible because it implies that the quadrics that define g are linearly
dependent. Hence we are in condition (ii). O

Proposition 2.9 establishes conditions (1) and (2) in §2.2.2. In this case, the cubic fourfold
X appears as a rational section of a P!-bundle over a quadric @), where a general P!-fiber
corresponds to a secant line of . In particular, X is birational to ) and thus is rational.

2.3 Cubic fourfolds containing disjoint planes

Cubic fourfolds containing two disjoint planes appear as limits of Pfaffian cubic fourfolds in
the moduli space ([Tre93], see also [Has16, Remark 7]). As an explicit example, consider P°
in homogeneous coordinates [u: v :w : x:y: z| and the two planes

P={x=y=2=0} and P:={u=v=w=0}
Then the cubic hypersurface
X = {uz? + vy® + w2? = vr + ¥y + w2} C PP

is smooth and contains P, and P,. Notice that a general point in P lies on a unique line
joining P; and P, and a line joining P, and P, intersects X in a third point outside the two
planes. (Compare these with (1) and (2) in §2.2.2.) This induces a birational map

p: PP x Po-=5X:(a,b)——p(a,b) where (a,b) X = {a,b,p(a,b)}.

The construction of the associated K3 surface is very straightforward in this case. Indeed,
the map p is undefined if and only if the line spanned by the pair (a,b) € P, X P; is contained
in X, so the base locus of p is defined by

Bs(p) = {uz® + vy® + wz* = 0 = v’z + v’y + w2} C P, x P.

This is a complete intersection in P? x P? cut out by polynomials of bidegrees (1,2) and
(2,1), so it is a K3 surface.

Remark 2.10. Pfaffian cubic fourfolds are Zariski dense in an irreducible divisor Cy4 in the
moduli space. They are examples of special cubic fourfolds to be defined in §3.2. The locus
C14 consists of special cubic fourfolds X labelled by a rank two saturated sublattice

h? € (2 153) o (i 14()) C H**(X,Z) where h =c,(Ox(1)). (2.6)
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When X contains a quintic del Pezzo surface T' (resp. a quartic scroll 3), the lattice (h?,T)
(resp. (h? X)) has the intersection matrix on the left (resp. on the right). Consider the
following subsets of Cyy:

Cpr = {X € Cy4 | X is Pfaffian}

Cap = {X € Cy4 | X contains a quintic del Pezzo surface}
Crs = {X € Cy14 | X contains a quartic rational scroll}
Cn = {X € C14 | X contains disjoint planes}

The first 3 subsets contain a Zariski open subset in Ci4, and we have Cpy = Cqp C Cgs.
However, it was proved by Bolognesi, Russo, and Stagliano [BRS19, Theorem 3.7] that Cps
is not Zariski open in Cy4. On the other hand, Cy has codimension one in Cy4, and Auel
[Aue20, Theorem 1] proved that the complement Cy4 \ Cpr is contained in Cp. In particular,
a member of Cy4 is Pfaffian or contains disjoint planes (or both).

3 Hodge theory of special cubic fourfolds

In this section, we will review the definitions of special cubic fourfolds and associated K3
surfaces, and try to give the ideas about how the numerical conditions (1.1) and (1.2) are
obtained. The main references for this part are Hassett’s seminal paper [Has00] and his
lecture note [Has16].

3.1 Hodge structures of cubic fourfolds

3.1.1 Middle cohomologies as lattices The Hodge diamond of a cubic fourfold has the shape

Notice that H*(X,Z) has a weight two Hodge structure. These Hodge numbers, together
with the Riemann bilinear relations, imply that the middle cohomology H*(X,Z) equipped
with the intersection product is a unimodular lattice of signature (21,2). Let h € H*(X,Z)
denote the class of hyperplane sections. Then the square h? € H*(X,Z) has self-intersection
h? - h? = h* = 3. As every indefinite unimodular lattice carrying a vector of odd self-
intersection possesses an orthogonal basis (see, for example, [MH73, Theorem 4.3]), the
lattice H*(X,Z) is isomorphic to (1)®*! & (—1)%2,
For the same reason, we can further identify the middle cohomology as

HYX,Z) =2 U @ EP @ (1) where U = <(1) (1)) : (3.1)
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Here Fjy is the unique unimodular even lattice of signature (8,0), which is spanned by the
vectors {eq,...,es} with e;-e; = 2 for all ¢ and e;-e; = —1 for i-th and j-th vertices adjacent
in the corresponding Dynkin diagram

1 2 3 4 7

8
Under the identification (3.1), we can let h* = (1,1,1) € (1) upon possibly taking a lattice
automorphism. This allows one to compute explicitly the primitive cohomology as

HY (X, Z)prim = (RA)HHED = o2 g EP* ® Ay where Ay = (—21 _21> :

Notice that this is an even lattice of signature (20, 2).

3.1.2  Torelli theorem for cubic fourfolds The Torelli theorem lays down the foundation for
a description about the moduli spaces of special cubic fourfolds to be introduced in §3.2. We
briefly review the theorem here.

For the sake of simplicity, let us denote

A :=U% 0 EP* @ A,.

The dual lattice AV := Hom(A, Z) is the space of Z-valued linear functionals on A. Due to
the nondegeneracy of the pairing on A, we can identify

N ={veAQ|v-weZforal we A}

In particular, AV carries a pairing inherited from A, and we can consider A as a sublattice
of AV via the natural embedding A — AY : v = v ® 1. The discriminant group of of A is
defined as the quotient AY /A, which can be computed explicitly via the isomorphisms

AV /A= AY /A, 2 Z/32.

Note that, as A is even, its pairing induces a Q/27Z-valued pairing on AY/A.
The automorphisms of the lattice A arising from the monodromy of cubic fourfolds form
the subgroup
[:={g € O(A) | g acts trivially on AY/A}.

This group acts on the period domain €2, defined as one of the connected components of
the open quadric {zx € PIA®C) | z-x =0, -T > 0}. The period space of A is defined
as the quotient P := I'\Q. This is a 20-dimensional quasi-projective variety according to
Baily—Borel [BB66]. Voisin’s Torelli theorem [Voi86] asserts that the period map

7:C——P: X+—— H»3(X,C) (3.2)

is an open immersion. In fact, the domain of this map can be extended to cover singular
cubics. More precisely, cubic hypersurfaces with at worst an ordinary double point are stable
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in the sense of geometric invariant theory, which can be proved via the numerical criterion
for stability [MFK94, §2.1] and the methods in [MFK94, §4.2]. Therefore, we can extend the
quotient C = [U/PGLg(C)] to

CocC (3.3)

such that the complement C \ C parametrizes cubics with an ordinary double point.

Theorem 3.1 ([Voi86]). The period map (3.2) extends to an open immersion
7:C——P: X+—— H(X,C)

where HY3(X, C) stands for the limiting Hodge structure for singular X .

3.2 Special cubic fourfolds and their moduli

The integral Hodge conjecture is valid for cubic fourfolds [Voil3], which asserts that the
sublattice

H**(X,7) := H**(X,C) N HYX,Z)
for every cubic fourfold X is generated by the classes of algebraic surfaces. This lattice is
spanned by h? if X € C is very general, i.e., is away from the union of a countable collection of
Zariski closed subsets. We say X is special if X contains an algebraic surface not homologous
to a complete intersection. In this case, X carries at least one labelling, namely a rank two
saturated sublattice K’ C H*?(X,Z) that contains h%. Suppose that K is spanned by h?
and the class v of some algebraic surface. Then the discriminant of K is defined as
h?-h%* h%. v)

v-h® v-w

disc(K) := det (

which is independent of the choices of basis elements. Using the lattice structures of the
middle cohomology of X, one can verify that the discriminant d of a labelling is necessarily
positive and satisfies d = 0 or 2 (mod 6) [Has00, Proposition 3.2.2].

3.2.1 Irreducibility of the moduli spaces The locus Cy C C of special cubic fourfolds pos-
sessing a labelling of discriminant d is an irreducible divisor provided that it is nonempty
[Has00, Theorem 3.2.3]. To see this, let us define P; C P be the I'-quotient of the union of

hyperplane sections
U K+ cQ.

labelling KCH*(X,Z)
of discriminant d

Then Cq = 77! (Py) where 7 is the period map (3.2). It is straightforward to verify that the
action of I" can be extended to the full H*(X,Z) by fixing h2. This action acts transitively
on the set of labellings with the same discriminant [Has00, Proposition 3.2.4]. For example,
if d is not divisible by 9, one can verify that an arbitrary labelling of discriminant d lies in
the orbit of the labelling

3 01 . 3 1 )
(0 Qn) if d=6n and (1 2n—|—1) if d=6n-+2.

It follows that P, is irreducible, hence Cy is irreducible.

11
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3.2.2  FExistence of special cubic fourfolds Hassett proved that C; is nonempty for each
d > 8 that satisfies d = 0 or 2 (mod 6) [Has00, Theorem 4.3.1]. This was achieved via a
correspondence between the set of cubics with an ordinary double point and the set of sextic
K3 surfaces: Let Xy C P? be a cubic hypersurface singular along an ordinary double point
p € Xo. The projection from p defines a birational map m,: Xo- = +P* which factors as

X, = BlgP*
/ \ (3.4)

The map ¢ is the blowup of X at p. On the other hand, ¢ is the contraction of the lines in
Xy passing through p, which is the same as the blowup of P* at a sextic K3 surface S C P*.
To verify this, one can work with affine coordinates (z1,...,z5) with p = (0,0,0,0,0) and
express X, as the zero locus of fy + f3, where f, and f3 are homogeneous polynomials of
degrees 2 and 3 respectively. Then S arises as the complete intersection {f, = f3 = 0} in P*.
Conversely, given a sextic K3 surface S C P*, one obtains a cubic X, C P° singular along an
ordinary double point via the same diagram, where the inverse 7, is defined by the system
of cubics passing through S. N

The above picture establishes an isomorphism between the complement Cg := C \ C and
the period space of sextic K3 surfaces. To construct a cubic fourfold with a labelling of
discriminant d > 8 with d = 0,2 (mod 6), one start with a sextic K3 surface S such that
the Picard group of S contains the lattice

6 0 ) 6 2 )
(O —2n) if d=6n and (2 —2n) if d=6n+2.

This produces an X, € Cq carrying a labelling of discriminant d via the construction (3.4),
and a member of Cy4 can be obtained by smoothing X,. We refer the reader to [Has00, §4.3]
for the details.

Theorem 3.2 ([Has00, Theorems 3.2.3 and 4.3.1]). The locus Cq C C of special cubic four-
folds of discriminant d is an irreducible divisor, which is nonempty if and only if d > 8 and
d=0,2 (mod 6).

3.3 Associated K3 surfaces

There are two different ways to define how a K3 surface is associated with a given special
cubic fourfold. The first one was introduced by Hassett in terms of of Hodge theory. The
other one was introduced by Kuznetsov via derived categories. We review the Hodge theoretic
definition here and leave the derived categorical one to §4.1.

Definition 3.3 (Associated K3 surfaces). Let X be a special cubic fourfold with a labelling
K of discriminant d and let S be a K3 surface with a polarization f of degree d. We say X
and S are (Hodge-)associated if there exists an isomorphism

HY(X,Z) > K+ — f+ c H*(S,Z)(-1) (3.5)

that preserves the Hodge structures.

12



K3 CATEGORIES AND THE RATIONALITY CONJECTURE

3.3.1 FEuxistence of associated K3 surfaces It turns out that the existence of an associated
K3 surface is a lattice theoretic problem. Indeed, it is easy to see that the isomorphism (3.5)
induces a lattice isomorphism between K+ (—1) and the lattice

Md = <—d> D UEBQ D E8<—1)€B2

underlying the primitive cohomology of a degree d K3 surface. Conversely, if there exists a
lattice isomorphism K+ (—1) & My, then the surjectivity of the period map for K3 surfaces
[Bea85, Siug1] asserts that there exists a pseudo-polarized K3 surface (S, f) with f2 = d such
that there is an isomorphism (3.5) preserving the Hodge structures. Recall that f is a pseudo-
polarization means that it lies in the closure of the Kahler cone of S. Then the smoothness
of X implies that K~ contains no vector of self-intersection 2 [Voi86, §4, Proposition 1]. This
implies that S contains no (—2)-curve orthogonal to f, so f is a polarization. As a result,
the searching for associated K3 surfaces boils down to a computation of lattices as treated
in [Has00, Proposition 5.1.4].

Theorem 3.4 ([Has00, Theorem 5.1.3]). A member X € Cq admits an associated K3 surface
if and only if d is not divisible by 4, 9, or any odd prime p =2 (mod 3).

3.8.2  Counting associated K3 surfaces For a very general X € Cy with such a d, there
exists exactly one associated K3 surface if d = 2 (mod 6) and exactly two if d =0 (mod 6).
This statement was established by considering the moduli space of marked cubic fourfolds

Cr = {(X,1: K — H**(X,Z)) | «(K) is a labelling of X}.

There exists no nontrivial automorphism of K that fixes h? if d = 2 (mod 6). When d = 0
(mod 6), the only nontrivial such automorphism acts on (h?)1% as the multiplication by —1.
This shows that the forgetting map C* — C, is a birational morphism for d = 2 (mod 6)
and generically 2-to-1 for d = 0 (mod 6). Moreover, a comparison between the constructions
of C* and the period space of polarized K3 surfaces of degree d shows that there exists an

embedding of the former into the latter [Has00, Corollary 5.2.4]. This yields:

Theorem 3.5 ([Has16, Proposition 24]). Let F; be the moduli space of polarized K3 surfaces
of degree d. Then the assignment of a K3 surface to ils associated cubic fourfold defines a
rational map F4 --+ Cq, which is birational if d = 2 (mod 6) and 2-to-1 if d =0 (mod 6).

4 K3 categories and the rationality conjecture

In this section, we review the formulation of the conjecture, the motivation, and the rational
examples discovered up to the point when this article was written.

4.1 K3 categories of cubic fourfolds

Definition 4.1. Let D a k-linear triangulated category where k is an algebraically closed
field of characteristic zero.

13



4.2 THE RATIONALITY CONJECTURE AND MOTIVATION

e A semiorthogonal decomposition D = (D,...,D,,) is an ordered collection of full
triangulated subcategories Dy, ..., Dy, of D such that Hom(D;, D;) = 0 for ¢ > j and
for every object F' € D there exists a chain of morphisms

O:Fm—)Fm,1 Fl F(]:F

such that cone(F; — F;,_1) € D; for 1 <i < m.

e An object E € D is called ezceptional if Hom(E, F) = k and Ext?(E,E) = 0 for
p # 0. An ordered collection of exceptional objects Ei, ..., E,, is called exceptional if
Ext?(E;, E;) = 0 for i > j and all p € Z.

In our setting, we have D = D’(X), the bounded derived category of coherent sheaves
on a cubic fourfold X C P°. Note that Kx = Ox(—3) by the adjunction formula. Then a
straightforward computation shows that

C for t=p=0

Ext?(Ox, Ox(—t)) =
xtP(Ox, Ox(—t)) {0 for 0<t<2 and peZ

where the second row can be verified with the aid of the Kodaira vanishing theorem. This
shows that the triple (Ox, Ox(1),Ox(2)) form an exceptional collection. The K3 category
of X is defined as the right orthogonal

Ax = (Ox,0x(1),0x(2))*
— {F € D"(X) | Hom(G, F) = 0 for all G € (Ox,Ox(1),0x(2))}
= {F € D"(X) | Ext*(Ox, F(—t)) =0 for 0 <t < 2}.

Via [MS19, Proposition 2.4], we see that D°(X) = (Ax, Ox, Ox (1), Ox(2)) is a semiorthog-
onal decomposition.

Definition 4.2 (D-associated K3 surfaces). A cubic fourfold X admits a (D-)associated K3
surface S if the K3 category Ax is equivalent to the derived category D°(S).

Addington and Thomas [AT14] conjectured that the conditions for the existence of an
associated K3 surface in the senses of Hodge theory (Definition 3.3) and of derived categories
should be equivalent. They proved that this is generically true:

Theorem 4.3 ([AT14, Theorem 1.1]). A cubic fourfold X admits a D-associated K3 surface
implies that it admits a Hodge-associated K3 surface, i.e., belongs to Cq for some d not
divisible by 4, 9 and any odd prime p = 2 (mod 3). Conversely, for every such d, there
exists a Zariski open subset in Cq where each member admits a D-associated K3 surface.

4.2 The rationality conjecture and motivation

Hassett [Has99, Theorem 4.2] found a locus Cs of codimension one in Cg which parametrizes
rational cubic fourfolds. Notice that a general member of Cg has no associated K3 surface
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4.2 THE RATIONALITY CONJECTURE AND MOTIVATION

due to Theorem 3.4. Nevertheless, Kuznetsov [Kuz10, Theorem 4.3] observed that a general
X € Cg admits an associated twisted K3 surface S in the sense that

»AX = Db(S, Oz)

where D%(S, «) is the bounded derived category of coherent sheaves on S twisted by the
Brauer class a € Br(X) = HZ(S,G,,). Moreover, the class « is trivial if and only if X
belongs to Cs [Kuzl0, Proposition 4.7]. This fact, together with Hassett’s result, motivates
the following conjecture:

Conjecture 4.4 ([Kuzl0, Conjecture 1.1)). A cubic fourfold is rational if and only if it
admits an associated K3 surface.

In the following, let us review the geometric construction behind the above facts.

4.2.1 Cubic fourfolds containing a plane Let X C P be a cubic fourfold containing a plane
P and let h € Pic(X) denote the class of hyperplane sections. Then the classes h? and [P]
in H*(X,7Z) span a sublattice with intersection matrix

31

1 3)°
This is a labelling of discriminant 8, thus X € Cs. As all planes in P5 are projectively
equivalent, this shows that every cubic fourfold containing a plane belongs to Cs.

Proposition 4.5. A cubic fourfold X C P° contains a plane if and only if X € Cs.

Proof. 1t remains to prove the converse. In fact, this is a consequence of the numerical char-
acterization given by Voisin [Voi86, §3]. Here we provide a proof based on the irreducibility
of Cg [Has00, Theorem 3.2.3]. Let Ip denote the ideal sheaf of a plane P C P5. Then a
straightforward computation shows that |/p(3)| has dimension 45 and the stabilizer of P in
PGLs(C) has dimension 26. It follows that the moduli of cubic fourfolds with a plane has
dimension 45—26 = 19, so there exists a Zariski open subset in Cg parametrizing such cubics.
This implies that every member of Cg contains a plane because a plane can only deform to
a plane in [P, O

The projection of P® from a plane P defines a rational map onto P? fibered in the 3-planes
containing P. Fach of these 3-planes cut out on X the union of P with a quadric surface.
Therefore, the restriction of the projection defines a rational map f: X --» P? fibered in the
residual quadric surfaces. Resolving f by blowing up at P gives the diagram

Q= BlpX
| (41
X----3P

where f': Q — P? is a morphism fibered in quadratic surfaces. Notice that the generic fiber
of @ can be considered as a quadric surface defined over the function field C(P?).
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4.2 THE RATIONALITY CONJECTURE AND MOTIVATION

Proposition 4.6. Let Q C P" be a smooth quadratic hypersurface over an arbitrary field k.
Then the following statements are equivalent:

(1) Q is rational.
(2) Q has a k-rational point.

(3) Q has a k'-rational point where k' /k is an extension of odd degree.

Proof. The implications (1) = (2) = (3) are trivial. The converse (2) = (1) holds as the
projection from a k-rational point p € Q defines a birational map Q --+ P! over k. The
other converse (3) = (2) follows from Springer’s theorem, see [EKMO08, Corollary 18.5]. This
completes the proof.

Let us remark that an elegant proof for (3) = (2) when Q is a surface can be found in
[Has99, Proposition 2.1]. In this case, the Fano scheme F(Q) of lines on Q consists of two
copies of P!, and the Abel-Jacobi map CHy(Q) — CHy(F(Q)) assigns to a O-cycle the sum
of the lines passing through it. Under this map, a 0-cycle on of odd degree on Q corresponds
to a O-cycle on F(Q) with odd degree on each of the P!-components, which can then be
twisted to be of degree one on each P! by the canonical class. The last cycle represents two
lines on @ which belong to different families of rulings, so their intersection is a rational
point. O

By Proposition 4.6, the generic fiber of Q is birational to the projective plane over C(P?)
if and only if it has a C(P?)-rational point of odd degree. In other words, Q itself, and thus
the cubic fourfold X, is rational if and only if O has a multisection of odd degree.

Lemma 4.7. Let W C X be a surface. Then the degree of its strict transform on Q as a
multisection of Q — P? equals the number

O(W) = deg(W) — [W] - [P].

Proof. In the Picard group of Q, let ¢ be the pullback by f’ the class of a line in P? and e
be the exceptional divisor of the blowing-up e¢: @ — X. Then we have ¢ = ¢*h — e, and the
class of a fiber of Q@ — P? is given by

(> = (¢"h — e)* = €'h* — 2(¢"*h)e + €.
Then the degree of W as a multisection equals
W] =[W]-h? =0+ €[W]-e* =deg(W) — [W]-[P]
as desired. O

Theorem 4.8 ([Has99]). If a cubic fourfold X contains a plane P and a surface W with odd
d(W), then it is rational. Such cubics are parametrized by a locus Cs of a countably infinite
union of divisors in Cg.

Proof. The first statement follows from Lemma 4.7 and the description right before the
lemma. For the second statement, observe that §(h?) =3 —1=2and §(P)=1—-3 = -2,
hence a very general member of Cg does not contain a surface W with (1) odd. Then the
result follows from [Hasl6, Proposition 12] and the existence of cubic fourfolds containing
disjoint planes. O
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4.2 THE RATIONALITY CONJECTURE AND MOTIVATION

4.2.2  Associated twisted K3 surfaces Here we review the construction of the twisted K3
surface associated to X. We will focus only on the geometric aspects and leave the technical
details about derived categories to [Kuz10].

Lemma 4.9. Suppose that X € Cg is general. Then the fiber quadrics of f: X —-» P? are
degenerate over a smooth sextic curve C C P2.

Proof. This is well known and one can find a proof, e.g., in [Kuz10, Lemma 4.1]. Here we
take an elementary approach. Let {wo,...,z5} be a set of homogeneous coordinates on P°
and assume that P = {zg = x; = x5 = 0}. Then there exists quadrics @y, @1, Q2 such that
X C P’ is defined by a polynomial of the form

F(xo,...,25) = 20Qo + 1Q1 + 22Qs.

Let us express an arbitrary point in the base P? as [1 : a : b] without loss of generality. Then
the preimage of [1 : a : b] under f is determined by

F(1,a,b,x3,x4,25) =0

which is a non-homogeneous quadric in 3, x4, 5. Due to the generality of X, the Hessian
of this quadric is a sextic non-homogeneous polynomial in @ and b and defines a smooth
sextic curve C' C P2, Because a quadric degenerates if and only if its Hessian vanishes, this
completes the proof. O

Let us assume that X € Cg is general enough so that Lemma 4.9 holds and the degenerate
fibers of f': Q@ — P? are at worst cones over conics (instead of unions of two planes). In this
setting, the double cover over P? branched over C is a K3 surface S. On the other hand, the
relative Fano variety of lines

F(Q/P?) = {lines contained in the fibers of Q — P?}

consists of two disjoint copies of P! on a smooth fiber and a single P! on a degenerate fiber.
It follows that the base change

M = S xg F(Q/P?) — F(Q/P?)

| |

S P2

induces a P!-fibration M — S, which then corresponds to a class a € Br(S). Kuznetsov
showed that there is an equivalence

Ax = DS, a). (4.2)

This relation was built up by a semiorthogonal decomposition of D°(Q) on one hand, the
expression of D°(S, a) as certain derived category on P? via the double cover S — P2 on the
other hand, and then compare these structures via the resolution diagram (4.1). We refer
the reader to [Kuz10, Theorem 4.3] for the details.
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4.3 KNOWN EXAMPLES OF RATIONAL CUBIC FOURFOLDS

Lemma 4.10.

(a) There exists a map
{multisections of Q — P*} — {multisections of M — S}

which preserves the degrees of multisections.

(b) There exists a map
{multisections of M — S} — {multisections of Q — P}

which raises the degree of a multisection from d to d>.

Proof. This is the main content of [Kuzl0, Proposition 4.7]. To prove (a), let us start
with a multisection 7" C Q of degree d. Then T meets each fiber in d points counted with
multiplicity. If the fiber is smooth, then there are d lines in each of the two families of rulings
incident to the d points. If the fiber is degenerate, then the same thing holds though there
is only one family of rulings. These lines correspond to d points in each fiber of M, thus T
determines a multisection of M — S of degree d.

Now we prove (b). Let R C M be a multisection of degree d. Pick a general point
p € P2 let p/,p” € S be its preimage points under the double cover S — P2, and let M,
and M, be their preimage fibers in the P!-fibration M — S. On the fiber quadric Q,CQ
over p, the intersections R N M, and RN M, correspond respectively to d lines in each
of the two families of rulings, and these 2d lines meet in totally d* points on Q,. Varying p
gives a multisection of degree d? on Q. O

Proposition 4.11. The following statements are equivalent:

1) The class o vanishes, i.e., Ax = D°(S) by (4.2).

3) The quadric fibration Q — P? admits a multisection of odd degree.

(
(
(
(

)

2) The P -fibration M — S admits a multisection of odd degree.
)
)

4) X € Cs, i.e., X contains a surface W such that (W) = deg(W) — [W] - [P] is odd.

Proof. The equivalence (1) < (2) follows from the geometric interpretation of brauer classes.
The equivalence (2) < (3) follows from Lemma 4.10. The equivalence (3) < (4) is a conse-
quence of Lemma 4.7. O

4.3 Known examples of rational cubic fourfolds

One of the implications in Conjecture 4.4 is still wide open, namely, among the cubic fourfolds
without an associated K3 surface, none of them is proved to be irrational. On the other hand,
there are a few types of cubics with associated K3 surfaces are known to be rational. Before
reviewing these examples, let us recall a result by Kontsevich and Tschinkel:
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4.3 KNOWN EXAMPLES OF RATIONAL CUBIC FOURFOLDS

Theorem 4.12 ([KT19, Theorem 1}). Let B be a smooth connected curve over a field of
characteristic zero. Suppose that there are smooth proper morphisms

X —>B and 7:X — B

whose generic fibers are birational over the function field of B. Then, for every closed point
b € B, the fibers of ™ and 7' over b are birational over the residue field at b. In particular,
if the generic fiber of m is rational, then every fiber of m is rational.

Due to this theorem, to prove that the cubic fourfolds parametrized by an irreducible
locus D C C (e.g. Cq C C) are all rational, it is sufficient to prove that D contains a Zariski
open subset whose members are rational. For example, the locus Cpy C Cy4 of Pfaffian cubic
fourfolds contains a subset which is Zariski open in Ci4, so the members of Cy4 are all rational
because Pfaffian cubic fourfolds are rational.

In fact, the rationality of all members of Ci4 was first proved by Bolognesi, Russo, and
Stagliano via degenerations of quartic scrolls [BRS19]. Besides Cy4, there are loci also known
to parametrize rational cubic fourfolds:

e The divisors Co, Css, and Cyo [RS19,RS20].
e Countably infinite collections of divisors in Cg [Has99] and C;5 [AHTVA19].
e Some divisors in Cyy [FL20].

This list is organized with respect to the methods for establishing the rationality. In the
following, we will sketch these constructions case by case with respect to the list.

4.8.1 Congruences of conics 5-secant to a surface Computations with Macaulay2 [GS21]
form an essential part in Russo and Stagliano’s approach to the rationality. Their main idea
is to verify that a general X € Cy4, where d = 26, 38,42, contains an irreducible surface S = Sy
which admits a special family H of curves which they call a congruence of (3e — 1)-secant
curves of degree e.

More precisely, a general C' € H is a smooth rational curve of degree e that intersects S
in 3e — 1 points counted with multiplicity and, for a general p € P°, there exists one and only
one such curve passing through p. The space H and the universal family H form a diagram

[

where 6 is birational. Notice that H is irreducible and of dimension 4 in this setting. Suppose
that X meets a general C' € H transversely. Then the intersection X NC' consists of 3e points
with 3e — 1 of them lying on S, which realizes X as a rational section of 7: H — H, hence
X is birational to H. According to [RS19, Theorem 1], if the rational map

p: P5— - 5 |Zg(3)] = P
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4.3 KNOWN EXAMPLES OF RATIONAL CUBIC FOURFOLDS

is birational onto its image, then the members of |Zg(3)| with at worst rational singularity
realize as sections as above. In particular, they are rational provided that H is rational.

Notice that a cubic hypersurface Y C P® with an ordinary double point ¢ € Y is rational
as the projection from ¢ defines a birational map Y --» P4 Therefore, to prove that H is
rational, it is sufficient to find one member of |Zg(3)| with an ordinary double point. Another
method to establish the rationality of H is via the trisecant flops introduced in [RS20, §2].
The benefit of the second approach is that it is able to reveal the birational incarnations of
the associated K3 surfaces in the rational parametrizations.

Remark 4.13. In the case d = 26, the surface Sy C P5 is a septic surface with a node,
constructed as the projection of a septic del Pezzo surface ¥ C P7 from a line which meets
the secant variety Sec(3) transversely at one point. In the case d = 38, the surface Ssg C P°
is a smooth surface of degree 10 and sectional genus 6, obtained as the image of P? via
the linear system of curves of degree 10 with 10 fixed triple points. In these two cases, the
congruences consist of 5-secant conics. For d = 42, the construction of Sy requires a lot
more space to describe, so we refer the reader to the original paper [RS20, §4.1].

4.83.2  Fibrations in rational surfaces over the plane As exhibited in §4.2.1, every cubic
fourfold X € Cg contains a plane P, and the projection from P induces a quadric fibration

Q :=BlpX — P2

which is rational if and only if it admits a multisection of odd degree. Moreover, the last
condition characterizes a countably infinite collection of divisors in Cs.

The situation for Cig is similar. In this case, a general X € Cig contains an elliptic ruled
surface T" C X, that is, a fibration in lines over an elliptic curve, such that the system of
quadrics passing through T' defines a rational map

I: P% - - 5 P2

whose base locus is 7" union with two planes [AHTVA19, Theorem 2]|. The surface T" is cut
out by cubics in P° [AHTVA19, Proposition 4], so the restriction of IT to X defines a rational
map with exactly 7" as the base locus. Resolving this map gives the diagram

S = BlpX
X —> P2

where the generic fiber of 7’ is a del Pezzo surface of degree 6 [AHTVA19, Theorem 6]. Let
us remark that, if S C X is the image of a general fiber of 7/, then the classes h* and [S]
span a sublattice in H*(X,Z) with intersection matrix

(2 168) (4.3)

which is a labelling of discriminant 18. Similar to quadric surfaces, we have the following
property about the rationality of sextic del Pezzo surfaces:
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4.3 KNOWN EXAMPLES OF RATIONAL CUBIC FOURFOLDS

Proposition 4.14 ([AHTVA19, Proposition 8|). Let S be a sextic del Pezzo surface over a
perfect field k. Then the following statements are equivalent:

e S is rational over k.
e S contains a k-rational point.
e S contains a k'-rational point for some extension k'/k of degree prime to 6.

By Proposition 4.14, the cubic fourfold X is rational if there exists a surface ¥ C X which
lifts to a section of 7’. An analysis on lattices shows that such cubics form a codimension
one locus in Cig. More precisely, [X] € H*(X,Z) and the labelling (4.3) span a sublattice

3 6 a
6 18 1| of discriminant A = —3 4 12a — 18a* + 18b. (4.4)
a 1 b

We can set a = —1,0, 1 upon replacing [%] with [3] +m(2h? —[S]) for a suitable m € Z, thus
positive integers A = 9 (mod 12) arise as discriminants, each for precisely one lattice. For
every such A, let Ca C Cig be the divisor of X labelled by (4.4). Then all but finitely many
Ca is nonempty, and the union | JCa C Cig gives the desired locus. We refer the reader to
[AHTVA19, §4] for the details about this part.

4.3.8  Birational maps defined by the Veronese surface Let X C P be a cubic fourfold
containing a Veronese surface V', namely, the embedding of P? into P° via the linear system
of conics. Then the classes h? and [V] span the labelling

<Z 142> C HY(X,7Z)

of discriminant 20, which shows that X € Cy. On the other hand, it can be proved that
every member of Cy \ Cg contains V' [FL20, Proposition 2.1]. Notice that the rational cubic
fourfolds introduced previously all belong to C; with d in the list

{8, 14, 18, 26, 38, 42}. (4.5)
The following result gives loci of rational cubic fourfolds in Cyy outside these divisors.

Theorem 4.15 ([FL20, Theorem 1.3]). There exists a birational involution o on Cyy such
that, for each d = 26, 38,42, it maps a component of the intersection Coo M Cq birationally
onto a divisor D C Cyy not contained in Cy for all d' in (4.5). In particular, there exist
at least three irreducible divisors in Coq consisting of cubic fourfolds whose rationality is not
known before.

The birational involution ¢ is constructed from the surface V. More precisely, the linear
system of quadrics cutting out V' has dimension 5, thus defines a rational map

F:PP -2 5P» (4.6)
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4.3 KNOWN EXAMPLES OF RATIONAL CUBIC FOURFOLDS

which turns out to be birational (see Remark 4.16). Up to a change of coordinates, we may
assume that it is involutive, i.e., F' = F'~!, and is defined by the 2-minors of the symmetric
matrix

To T1 Ts
Tr1 T2 I3 . (47)
Ts X3 T4

The exceptional divisor of F' coincides with the secant variety of V', where the latter is defined
by the determinant of (4.7), thus is a cubic hypersurface singular along V. Therefore, the
restriction of F' to a smooth cubic X C P° containing V induces a birational map

f: X-=3X" where X' =F(X)cCP°.

Notice that this can be resolved by a single blowup as below

Y =Bl X
PN m
X------ ; ————— » X',

Remark 4.16. A birational automorphism of P" is called a Cremona transformation. The
map F’ is one of the only seven types of Cremona transformations with an irreducible smooth
curve or surface as base locus [CK89, Theorems 2.2 & 3.3]. If one allows surfaces with at
worst non-normal double points, then there is only one additional possibility, which are
Cremona transformations of P* with base loci birational to K3 surfaces of degree 12. We
refer the reader to [HL18] for the details.

Lemma 4.17. The variety X' C P is a cubic hypersurface containing V.

Proof. One way to prove the statement is to resolve F as

I := Bl P°
/ \4
R - 5> P5

and then to compute the strict transform of X’ to I' in the Picard group in terms of the
pullback of the hyperplane class under m, and the exceptional divisor of ;. We refer the
reader to [FL20, Proposition 3.2] for the details. Here we provide an elementary approach.
Suppose that F' is expressed explicitly as

yi:Qi(fbo,...,lL‘5), i:07...,5, (49)
where Qo, ..., Qs are quadrics that cut V out in P°. Then X is defined by a polynomial
of the form Z?:o L;Q; where Ly, ..., Ls are linear in zg,--- ,25. Since F' = F~! we can

express I’ in the same way as (4.9) with z; replaced by y; and vice versa. Therefore, X’
is defined by the polynomial Z?:o L;y; where Ly, ..., Ly are linear in Qo(y),...,®Qs(y). In
particular, X’ is defined by a cubic equation in vq, ..., ys vanishing along V. O
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From Lemma 4.17, we get a birational involution
U:CQO_:J_>C20:X|—>F(X) (410)

and we would like to know how it acts on the intersection Coy N Cy4, especially for d in the
list 4.5. An intersection-theoretic computation on the resolution (4.8) shows that a very
general X € Cy N Cy is taken to X’ € Cyy such that there is a transformation law

4 a 3 4 4a — b
12 b)—| 4 12 b ~ [22(X', 7).
b ¢ 4a—b b c+(3a—10)?

H*2(X,Z) =

Q@ b~ W

Theorem 4.15 was then proved by analyzing which labellings can be contained in the right
hand side. As an explicit example, one can find a component D C Cyy N Co¢ on which the
transformation law has the form

3 4 1 3 4 3
4 12 1|—— 14 12 1
1 1 9 3 1 13

Then a computation shows that the lattice on the right bears a labelling of discriminant 146
but no labelling of discriminant listed in (4.5) [FL20, Theorem 3.13]. (The discriminants 2
and 6 also need to be ruled out in order to confirm that the image cubics are smooth.) Notice
that 146 satisfies the criterion for the existence of an associated K3 surface (Theorem 3.4).
As a consequence, the image component o(D) C Cy N Ci46 parametrizes cubic fourfolds
whose rationality is not known before.

Remark 4.18. Two cubic fourfolds X and X’ are called Fourier—-Mukai partners if their K3
categories Ax and Ax are equivalent. The involution (4.10) takes a very general member
of Cy to its unique non-isomorphic Fourier-Mukai partner [FL20, Theorem 1.1].

References

[ABCH13| Daniele Arcara, Aaron Bertram, Izzet Coskun, and Jack Huizenga, The minimal model program
for the Hilbert scheme of points on P? and Bridgeland stability, Adv. Math. 235 (2013), 580~
626.

[AHTVA19] Nicolas Addington, Brendan Hassett, Yuri Tschinkel, and Anthony Vérilly-Alvarado, Cubic
fourfolds fibered in sextic del Pezzo surfaces, Amer. J. Math. 141 (2019), no. 6, 1479-1500.

[AT14] Nicolas Addington and Richard Thomas, Hodge theory and derived categories of cubic fourfolds,
Duke Math. J. 163 (2014), no. 10, 1885-1927.

[Aue20] Asher Auel, Brill-Noether special cubic fourfolds of discriminant 14, 2020. arXiv:2007.15590.

[BB66] W. L. Baily Jr. and A. Borel, Compactification of arithmetic quotients of bounded symmetric
domains, Ann. of Math. (2) 84 (1966), 442-528.

[BCO9] Lev Borisov and Andrei Caldararu, The Pfaffian-Grassmannian derived equivalence, J. Alge-
braic Geom. 18 (2009), no. 2, 201-222.

23


https://arxiv.org/abs/2007.15590

REFERENCES

[BD85] Arnaud Beauville and Ron Donagi, La variété des droites d’une hypersurface cubique de dimen-
sion 4, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 14, 703-706.

[Bea00] Arnaud Beauville, Determinantal hypersurfaces, 2000, pp. 39-64. Dedicated to William Fulton
on the occasion of his 60th birthday.

[Bea85] | Surjectivité de lapplication des périodes, 1985, pp. 123-128. Geometry of K3 surfaces:
moduli and periods (Palaiseau, 1981/1982).

[Bea96] , Complex algebraic surfaces, Second, London Mathematical Society Student Texts,
vol. 34, Cambridge University Press, Cambridge, 1996. Translated from the 1978 French original

by R. Barlow, with assistance from N. I. Shepherd-Barron and M. Reid.

[BRS19] Michele Bolognesi, Francesco Russo, and Giovanni Stagliano, Some loci of rational cubic four-
folds, Math. Ann. 373 (2019), no. 1-2, 165-190.

[CGT2] C. Herbert Clemens and Phillip A. Griffiths, The intermediate Jacobian of the cubic threefold,
Ann. of Math. (2) 95 (1972), 281-356.

[CK89] Bruce Crauder and Sheldon Katz, Cremona transformations with smooth irreducible fundamen-
tal locus, Amer. J. Math. 111 (1989), no. 2, 289-307.

[EKMO8] Richard Elman, Nikita Karpenko, and Alexander Merkurjev, The algebraic and geometric theory
of quadratic forms, American Mathematical Society Colloquium Publications, vol. 56, American
Mathematical Society, Providence, RI, 2008.

[Fan43] Gino Fano, Sulle forme cubiche dello spazio a cinque dimensioni contenenti rigate razionali del
4° ordine, Comment. Math. Helv. 15 (1943), 71-80.

[FL20] Yu-Wei Fan and Kuan-Wen Lai, New rational cubic fourfolds arising from Cremona transfor-
mations (2020). arXiv:2003.00366.

[Ful98] William Fulton, Intersection theory, Second, Ergebnisse der Mathematik und ihrer Grenzgebi-
ete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related
Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin,
1998.

[GS21] Daniel R. Grayson and Michael E. Stillman, Macaulay2, a software system for research in
algebraic geometry, 2021. Available at http://www.math.uiuc.edu/Macaulay2/.

[Has00] Brendan Hassett, Special cubic fourfolds, Compositio Math. 120 (2000), no. 1, 1-23.

[Has16] | Cubic fourfolds, K3 surfaces, and rationality questions, Rationality problems in alge-
braic geometry, 2016, pp. 29-66.

, Some rational cubic fourfolds, J. Algebraic Geom. 8 (1999), no. 1, 103—-114.

[Has99]

[HL18] Brendan Hassett and Kuan-Wen Lai, Cremona transformations and derived equivalences of K3
surfaces, Compos. Math. 154 (2018), no. 7, 1508-1533.

[HTO01] B. Hassett and Y. Tschinkel, Rational curves on holomorphic symplectic fourfolds, Geom. Funct.
Anal. 11 (2001), no. 6, 1201-1228.

[KT19] Maxim Kontsevich and Yuri Tschinkel, Specialization of birational types, Invent. Math. 217
(2019), no. 2, 415-432.

[Kuz10] Alexander Kuznetsov, Derived categories of cubic fourfolds, Cohomological and geometric ap-
proaches to rationality problems, 2010, pp. 219-243.

[Lail7] Kuan-Wen Lai, New cubic fourfolds with odd-degree unirational parametrizations, Algebra Num-
ber Theory 11 (2017), no. 7, 1597-1626.

[MFK94] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, Third, Ergebnisse der
Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34,
Springer-Verlag, Berlin, 1994.

24


https://arxiv.org/abs/2003.00366
http://www.math.uiuc.edu/Macaulay2/

REFERENCES

[MH73] John Milnor and Dale Husemoller, Symmetric bilinear forms, Springer-Verlag, New York-
Heidelberg, 1973. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73.

[Mor40] Ugo Morin, Sulla razionalita dell’ipersuperficie cubica generale dello spazio lineare Ss, Rend.
Sem. Mat. Univ. Padova 11 (1940), 108-112.

[MS19] Emanuele Macri and Paolo Stellari, Lectures on Non-commutative K3 Surfaces, Bridgeland
Stability, and Moduli Spaces, Birational geometry of hypersurfaces, 2019.

[RS19] Francesco Russo and Giovanni Stagliano, Congruences of 5-secant conics and the rationality of
some admissible cubic fourfolds, Duke Math. J. 168 (2019), no. 5, 849-865.

[RS20]

, Trisecant flops, their associated K3 surfaces and the rationality of some Fano fourfolds,

2020. arXiv:1909.01263.

[Siu81] Yum Tong Siu, A simple proof of the surjectivity of the period map of K3 surfaces, Manuscripta
Math. 35 (1981), no. 3, 311-321.

[Tre84] S. L. Tregub, Three constructions of rationality of a cubic fourfold, Vestnik Moskov. Univ. Ser.
I Mat. Mekh. 3 (1984), 8-14.

, Two remarks on four-dimensional cubics, Uspekhi Mat. Nauk 48 (1993), no. 2(290),
201-202.

[Tre93)

[Voil3] C. Voisin, Abel-Jacobi map, integral Hodge classes and decomposition of the diagonal, J. Alge-
braic Geom. 22 (2013), no. 1, 141-174.

[Voi86] Claire Voisin, Théoréme de Torelli pour les cubiques de P®, Invent. Math. 86 (1986), no. 3,
577-601.

K.-W. Lai, DEPARTMENT OF SMART COMPUTING AND APPLIED MATHEMATICS
TUNGHAT UNIVERSITY
No. 1727, SEc. 4, TAIWAN BLvD., XI1TUN DIST., TAICHUNG CITY 407224, TAIWAN

NATIONAL CENTER FOR THEORETICAL SCIENCE
No. 1, SEc. 4, RoosevELT RD., TAIpEl CiTY 106319, TAIWAN

EMAIL: kwlai@thu.edu.tw

25


https://arxiv.org/abs/1909.01263

	Introduction
	Pfaffian cubic fourfolds
	Construction and the associated K3 surfaces
	Fano variety of lines as hyperkähler fourfolds
	Relations among the Hodge structures

	Approaches to the rationality
	Direct application of the construction
	Using quintic del Pezzo surfaces
	Using quartic scrolls

	Cubic fourfolds containing disjoint planes

	Hodge theory of special cubic fourfolds
	Hodge structures of cubic fourfolds
	Middle cohomologies as lattices
	Torelli theorem for cubic fourfolds

	Special cubic fourfolds and their moduli
	Irreducibility of the moduli spaces
	Existence of special cubic fourfolds

	Associated K3 surfaces
	Existence of associated K3 surfaces
	Counting associated K3 surfaces


	K3 categories and the rationality conjecture
	K3 categories of cubic fourfolds
	The rationality conjecture and motivation
	Cubic fourfolds containing a plane
	Associated twisted K3 surfaces

	Known examples of rational cubic fourfolds
	Congruences of conics 5-secant to a surface
	Fibrations in rational surfaces over the plane
	Birational maps defined by the Veronese surface



